Files
mt/tools/plot_scripts/results_semi_labels_comparison.py

372 lines
11 KiB
Python
Raw Permalink Normal View History

# curves_2x1_by_net_with_regimes_from_df.py
from __future__ import annotations
import shutil
from datetime import datetime
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import polars as pl
# CHANGE THIS IMPORT IF YOUR LOADER MODULE NAME IS DIFFERENT
2025-09-27 16:34:52 +02:00
from load_results import load_results_dataframe
from matplotlib.lines import Line2D
from scipy.stats import sem, t
# ---------------------------------
# Config
# ---------------------------------
2025-09-09 14:15:16 +02:00
ROOT = Path("/home/fedex/mt/results/copy")
OUTPUT_DIR = Path("/home/fedex/mt/plots/results_semi_labels_comparison")
LATENT_DIMS = [32, 64, 128, 256, 512, 768, 1024]
SEMI_REGIMES = [(0, 0), (50, 10), (500, 100)]
EVALS = ["exp_based", "manual_based"]
2025-09-27 16:34:52 +02:00
EVALS_LABELS = {
"exp_based": "Experiment-Based Labels",
"manual_based": "Manually-Labeled",
}
# Interp grids
ROC_GRID = np.linspace(0.0, 1.0, 200)
PRC_GRID = np.linspace(0.0, 1.0, 200)
# Baselines are duplicated across nets; use Efficient-only to avoid repetition
BASELINE_NET = "Efficient"
2025-09-27 16:34:52 +02:00
BASELINE_LABELS = {
"isoforest": "Isolation Forest",
"ocsvm": "One-Class SVM",
}
# Colors/styles
COLOR_BASELINES = {
"isoforest": "tab:purple",
"ocsvm": "tab:green",
}
COLOR_REGIMES = {
(0, 0): "tab:blue",
(50, 10): "tab:orange",
(500, 100): "tab:red",
}
LINESTYLES = {
(0, 0): "-",
(50, 10): "--",
(500, 100): "-.",
}
# ---------------------------------
# Helpers
# ---------------------------------
def _net_label_col(df: pl.DataFrame) -> pl.DataFrame:
return df.with_columns(
pl.when(
pl.col("network").cast(pl.Utf8).str.to_lowercase().str.contains("lenet")
)
.then(pl.lit("LeNet"))
.when(
pl.col("network").cast(pl.Utf8).str.to_lowercase().str.contains("efficient")
)
.then(pl.lit("Efficient"))
.otherwise(pl.col("network").cast(pl.Utf8))
.alias("net_label")
)
def mean_ci(values: list[float], confidence: float = 0.95) -> tuple[float, float]:
"""Return mean and half-width of the (approx) confidence interval. Robust to n<2."""
arr = np.asarray([v for v in values if v is not None], dtype=float)
if arr.size == 0:
return np.nan, np.nan
if arr.size == 1:
return float(arr[0]), 0.0
m = float(arr.mean())
s = sem(arr, nan_policy="omit")
h = s * t.ppf((1 + confidence) / 2.0, arr.size - 1)
return m, float(h)
def _interp_mean_std(curves: list[tuple[np.ndarray, np.ndarray]], grid: np.ndarray):
"""Interpolate many (x,y) onto grid and return mean±std; robust to duplicates/empty."""
if not curves:
return np.full_like(grid, np.nan, float), np.full_like(grid, np.nan, float)
interps = []
for x, y in curves:
if x is None or y is None:
continue
x = np.asarray(x, float)
y = np.asarray(y, float)
if x.size == 0 or y.size == 0 or x.size != y.size:
continue
order = np.argsort(x)
x, y = x[order], y[order]
x, uniq_idx = np.unique(x, return_index=True)
y = y[uniq_idx]
g = np.clip(grid, x[0], x[-1])
yi = np.interp(g, x, y)
interps.append(yi)
if not interps:
return np.full_like(grid, np.nan, float), np.full_like(grid, np.nan, float)
A = np.vstack(interps)
return np.nanmean(A, axis=0), np.nanstd(A, axis=0)
def _extract_curves(rows: list[dict], kind: str) -> list[tuple[np.ndarray, np.ndarray]]:
curves = []
for r in rows:
if kind == "roc":
c = r.get("roc_curve")
if not c:
continue
x, y = c.get("fpr"), c.get("tpr")
else:
c = r.get("prc_curve")
if not c:
continue
x, y = c.get("recall"), c.get("precision")
if x is None or y is None:
continue
curves.append((np.asarray(x, float), np.asarray(y, float)))
return curves
def _select_rows(
df: pl.DataFrame,
*,
model: str,
eval_type: str,
latent_dim: int,
semi_normals: int | None = None,
semi_anomalous: int | None = None,
net_label: str | None = None,
) -> pl.DataFrame:
exprs = [
pl.col("model") == model,
pl.col("eval") == eval_type,
pl.col("latent_dim") == latent_dim,
]
if semi_normals is not None:
exprs.append(pl.col("semi_normals") == semi_normals)
if semi_anomalous is not None:
exprs.append(pl.col("semi_anomalous") == semi_anomalous)
if net_label is not None:
exprs.append(pl.col("net_label") == net_label)
return df.filter(pl.all_horizontal(exprs))
2025-09-27 16:34:52 +02:00
def _auc_list(sub: pl.DataFrame, kind: str) -> list[float]:
return [x for x in sub.select(f"{kind}_auc").to_series().to_list() if x is not None]
def _plot_panel(
ax,
df: pl.DataFrame,
*,
eval_type: str,
net_for_deepsad: str,
latent_dim: int,
kind: str,
):
"""
2025-09-27 16:34:52 +02:00
Plot one panel: DeepSAD (net_for_deepsad) with 3 regimes + Baselines (from Efficient).
Legend entries include mean±CI of AUC/AP.
"""
ax.grid(True, alpha=0.3)
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
if kind == "roc":
ax.set_xlabel("FPR")
ax.set_ylabel("TPR")
grid = ROC_GRID
else:
ax.set_xlabel("Recall")
ax.set_ylabel("Precision")
grid = PRC_GRID
handles, labels = [], []
# ----- Baselines (Efficient)
for model in ("isoforest", "ocsvm"):
sub_b = _select_rows(
df,
model=model,
eval_type=eval_type,
latent_dim=latent_dim,
net_label=BASELINE_NET,
)
if sub_b.height == 0:
continue
rows = sub_b.select("roc_curve" if kind == "roc" else "prc_curve").to_dicts()
curves = _extract_curves(rows, kind)
mean_y, std_y = _interp_mean_std(curves, grid)
if np.all(np.isnan(mean_y)):
continue
# Metric for legend
2025-09-27 16:34:52 +02:00
metric_vals = _auc_list(sub_b, kind)
m, ci = mean_ci(metric_vals)
2025-09-27 16:34:52 +02:00
lab = f"{BASELINE_LABELS[model]}\n(AUC={m:.3f}±{ci:.3f})"
color = COLOR_BASELINES[model]
h = ax.plot(grid, mean_y, lw=2, color=color, label=lab)[0]
ax.fill_between(grid, mean_y - std_y, mean_y + std_y, alpha=0.15, color=color)
handles.append(h)
labels.append(lab)
# ----- DeepSAD (this panel's net) across semi-regimes
for regime in SEMI_REGIMES:
sn, sa = regime
sub_d = _select_rows(
df,
model="deepsad",
eval_type=eval_type,
latent_dim=latent_dim,
semi_normals=sn,
semi_anomalous=sa,
net_label=net_for_deepsad,
)
if sub_d.height == 0:
continue
rows = sub_d.select("roc_curve" if kind == "roc" else "prc_curve").to_dicts()
curves = _extract_curves(rows, kind)
mean_y, std_y = _interp_mean_std(curves, grid)
if np.all(np.isnan(mean_y)):
continue
2025-09-27 16:34:52 +02:00
metric_vals = _auc_list(sub_d, kind)
m, ci = mean_ci(metric_vals)
2025-09-27 16:34:52 +02:00
lab = f"DeepSAD {net_for_deepsad}{sn}/{sa}\n(AUC={m:.3f}±{ci:.3f})"
color = COLOR_REGIMES[regime]
ls = LINESTYLES[regime]
h = ax.plot(grid, mean_y, lw=2, color=color, linestyle=ls, label=lab)[0]
ax.fill_between(grid, mean_y - std_y, mean_y + std_y, alpha=0.15, color=color)
handles.append(h)
labels.append(lab)
# Chance line for ROC
if kind == "roc":
ax.plot([0, 1], [0, 1], "k--", alpha=0.6, label="Chance")
# Legend
2025-09-27 16:34:52 +02:00
ax.legend(loc="upper right", fontsize=9, frameon=True)
def make_figures_for_dim(
df: pl.DataFrame, eval_type: str, latent_dim: int, out_dir: Path
):
# ROC: 2×1
fig_roc, axes = plt.subplots(
2025-09-27 16:34:52 +02:00
nrows=2, ncols=1, figsize=(7, 10), constrained_layout=True
)
2025-10-21 19:04:19 +02:00
# fig_roc.suptitle(
# f"ROC — {EVALS_LABELS[eval_type]} — Latent Dim.={latent_dim}", fontsize=14
# )
_plot_panel(
axes[0],
df,
eval_type=eval_type,
net_for_deepsad="LeNet",
latent_dim=latent_dim,
kind="roc",
)
2025-10-21 19:04:19 +02:00
axes[0].set_title("(a) DeepSAD (LeNet) + Baselines")
_plot_panel(
axes[1],
df,
eval_type=eval_type,
net_for_deepsad="Efficient",
latent_dim=latent_dim,
kind="roc",
)
2025-10-21 19:04:19 +02:00
axes[1].set_title("(b) DeepSAD (Efficient) + Baselines")
out_roc = out_dir / f"roc_{latent_dim}_{eval_type}.png"
fig_roc.savefig(out_roc, dpi=150, bbox_inches="tight")
plt.close(fig_roc)
# PRC: 2×1
fig_prc, axes = plt.subplots(
2025-09-27 16:34:52 +02:00
nrows=2, ncols=1, figsize=(7, 10), constrained_layout=True
)
2025-10-21 19:04:19 +02:00
# fig_prc.suptitle(
# f"PRC — {EVALS_LABELS[eval_type]} — Latent Dim.={latent_dim}", fontsize=14
# )
_plot_panel(
axes[0],
df,
eval_type=eval_type,
net_for_deepsad="LeNet",
latent_dim=latent_dim,
kind="prc",
)
2025-10-21 19:04:19 +02:00
axes[0].set_title("(a)")
_plot_panel(
axes[1],
df,
eval_type=eval_type,
net_for_deepsad="Efficient",
latent_dim=latent_dim,
kind="prc",
)
2025-10-21 19:04:19 +02:00
axes[1].set_title("(b)")
out_prc = out_dir / f"prc_{latent_dim}_{eval_type}.png"
fig_prc.savefig(out_prc, dpi=150, bbox_inches="tight")
plt.close(fig_prc)
def main():
# Load dataframe and prep
df = load_results_dataframe(ROOT, allow_cache=True)
df = _net_label_col(df)
# Filter to relevant models/evals only once
df = df.filter(
(pl.col("model").is_in(["deepsad", "isoforest", "ocsvm"]))
& (pl.col("eval").is_in(EVALS))
)
# Output/archiving like your AE script
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
archive = OUTPUT_DIR / "archive"
archive.mkdir(parents=True, exist_ok=True)
ts_dir = archive / datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
ts_dir.mkdir(parents=True, exist_ok=True)
# Generate figures
for eval_type in EVALS:
for dim in LATENT_DIMS:
make_figures_for_dim(
df, eval_type=eval_type, latent_dim=dim, out_dir=ts_dir
)
# Copy this script for provenance
script_path = Path(__file__)
try:
shutil.copy2(script_path, ts_dir)
except Exception:
pass # best effort if running in environments where __file__ may not exist
# Update "latest"
latest = OUTPUT_DIR / "latest"
latest.mkdir(parents=True, exist_ok=True)
for f in latest.iterdir():
if f.is_file():
f.unlink()
for f in ts_dir.iterdir():
if f.is_file():
shutil.copy2(f, latest / f.name)
print(f"Saved plots to: {ts_dir}")
print(f"Also updated: {latest}")
if __name__ == "__main__":
main()