Files
mt/tools/render3d.py

166 lines
5.0 KiB
Python
Raw Permalink Normal View History

from pathlib import Path
from sys import exit
import matplotlib.pyplot as plt
import numpy as np
from configargparse import (
ArgParser,
ArgumentDefaultsRawHelpFormatter,
YAMLConfigFileParser,
)
from open3d.io import read_pinhole_camera_parameters, write_image
from open3d.utility import Vector3dVector
from open3d.visualization.rendering import MaterialRecord, OffscreenRenderer
from pointcloudset import Dataset
from rich.progress import track
from util import (
calculate_average_frame_rate,
create_video_from_images,
existing_file,
load_dataset,
)
def render_3d_images(
dataset: Dataset,
camera_config_input_json_path: Path,
output_images_path: Path,
image_pattern_prefix,
) -> list[Path]:
camera_params = read_pinhole_camera_parameters("saved_camera_settings.json")
width, height = 1920, 1080
renderer = OffscreenRenderer(width, height)
renderer.setup_camera(
intrinsic_matrix=camera_params.intrinsic.intrinsic_matrix,
extrinsic_matrix=camera_params.extrinsic,
intrinsic_height_px=camera_params.intrinsic.height,
intrinsic_width_px=camera_params.intrinsic.width,
)
renderer.scene.set_background([1, 1, 1, 1])
def color_points_by_range(pcd):
points = np.asarray(pcd.points)
distances = np.linalg.norm(points, axis=1)
max_distance = distances.max()
min_distance = distances.min()
normalized_distances = (distances - min_distance) / (
max_distance - min_distance
)
colors = plt.get_cmap("jet")(normalized_distances)[:, :3]
pcd.colors = Vector3dVector(colors)
return pcd
rendered_images = []
for i, pc in track(
enumerate(dataset, 1), description="Rendering images...", total=len(dataset)
):
o3d_pc = pc.to_instance("open3d")
o3d_pc = color_points_by_range(o3d_pc)
renderer.scene.add_geometry("point_cloud", o3d_pc, MaterialRecord())
image_path = output_images_path / f"{image_pattern_prefix}_{i:04d}.png"
write_image(image_path.as_posix(), renderer.render_to_image())
renderer.scene.remove_geometry("point_cloud")
rendered_images.append(image_path)
return rendered_images
def main() -> int:
parser = ArgParser(
config_file_parser_class=YAMLConfigFileParser,
default_config_files=["render3d_config.yaml"],
formatter_class=ArgumentDefaultsRawHelpFormatter,
description="Render a 3d representation of a point cloud",
)
parser.add_argument(
"--render-config-file", is_config_file=True, help="yaml config file path"
)
parser.add_argument(
"--input-bag-path", required=True, type=existing_file, help="path to bag file"
)
parser.add_argument(
"--tmp-files-path",
default=Path("./tmp"),
type=Path,
help="path temporary files will be written to",
)
parser.add_argument(
"--output-images",
type=bool,
default=True,
help="if rendered frames should be outputted as images",
)
parser.add_argument(
"--output-images-path",
default=Path("./output"),
type=Path,
help="path rendered frames should be written to",
)
parser.add_argument(
"--output-video",
type=bool,
default=True,
help="if rendered frames should be outputted as a video",
)
parser.add_argument(
"--output-video-path",
default=Path("./output/2d_render.mp4"),
type=Path,
help="path rendered video should be written to",
)
parser.add_argument(
"--output-images-prefix",
default="2d_render",
type=str,
help="filename prefix for output",
)
parser.add_argument(
"--camera-config-input-json-path",
default="./saved_camera_settings.json",
type=existing_file,
help="path to json file containing camera settings (can be created with the create_camera_settings.py script)",
)
args = parser.parse_args()
if args.output_images:
args.output_images_path.mkdir(parents=True, exist_ok=True)
args.tmp_files_path = args.output_images_path
else:
args.tmp_files_path.mkdir(parents=True, exist_ok=True)
if args.output_video:
args.output_video_path.parent.mkdir(parents=True, exist_ok=True)
2024-06-11 11:07:05 +02:00
dataset = load_dataset(args.input_bag_path)
images = render_3d_images(
dataset,
args.camera_config_input_json_path,
args.tmp_files_path,
args.output_images_prefix,
)
if args.output_video:
input_images_pattern = (
f"{args.tmp_files_path / args.output_images_prefix}_%04d.png"
)
create_video_from_images(
input_images_pattern,
args.output_video_path,
calculate_average_frame_rate(dataset),
)
if not args.output_images:
for image in images:
image.unlink()
return 0
if __name__ == "__main__":
exit(main())