83 lines
2.1 KiB
Python
83 lines
2.1 KiB
Python
|
|
import pickle
|
||
|
|
from pathlib import Path
|
||
|
|
|
||
|
|
import matplotlib.pyplot as plt
|
||
|
|
import numpy as np
|
||
|
|
from scipy.stats import sem, t
|
||
|
|
from sklearn.metrics import auc
|
||
|
|
|
||
|
|
|
||
|
|
# Confidence interval function
|
||
|
|
def confidence_interval(data, confidence=0.95):
|
||
|
|
n = len(data)
|
||
|
|
mean = np.mean(data)
|
||
|
|
std_err = sem(data)
|
||
|
|
h = std_err * t.ppf((1 + confidence) / 2.0, n - 1)
|
||
|
|
return mean, h
|
||
|
|
|
||
|
|
|
||
|
|
# Load ROC and AUC values from pickle files
|
||
|
|
roc_data = []
|
||
|
|
auc_scores = []
|
||
|
|
isoforest_roc_data = []
|
||
|
|
isoforest_auc_scores = []
|
||
|
|
|
||
|
|
results_path = Path(
|
||
|
|
"/home/fedex/mt/projects/thesis-kowalczyk-jan/Deep-SAD-PyTorch/log/DeepSAD/subter_kfold_0_0"
|
||
|
|
)
|
||
|
|
|
||
|
|
for i in range(5):
|
||
|
|
with (results_path / f"results_{i}.pkl").open("rb") as f:
|
||
|
|
data = pickle.load(f)
|
||
|
|
roc_data.append(data["test_roc"])
|
||
|
|
auc_scores.append(data["test_auc"])
|
||
|
|
with (results_path / f"results.isoforest_{i}.pkl").open("rb") as f:
|
||
|
|
data = pickle.load(f)
|
||
|
|
isoforest_roc_data.append(data["test_roc"])
|
||
|
|
isoforest_auc_scores.append(data["test_auc"])
|
||
|
|
|
||
|
|
# Calculate mean and confidence interval for AUC scores
|
||
|
|
mean_auc, auc_ci = confidence_interval(auc_scores)
|
||
|
|
|
||
|
|
# Combine ROC curves
|
||
|
|
mean_fpr = np.linspace(0, 1, 100)
|
||
|
|
tprs = []
|
||
|
|
|
||
|
|
for fpr, tpr, _ in roc_data:
|
||
|
|
interp_tpr = np.interp(mean_fpr, fpr, tpr)
|
||
|
|
interp_tpr[0] = 0.0
|
||
|
|
tprs.append(interp_tpr)
|
||
|
|
|
||
|
|
mean_tpr = np.mean(tprs, axis=0)
|
||
|
|
mean_tpr[-1] = 1.0
|
||
|
|
std_tpr = np.std(tprs, axis=0)
|
||
|
|
|
||
|
|
# Plot ROC curves with confidence margins
|
||
|
|
plt.figure()
|
||
|
|
plt.plot(
|
||
|
|
mean_fpr,
|
||
|
|
mean_tpr,
|
||
|
|
color="b",
|
||
|
|
label=f"Mean ROC (AUC = {mean_auc:.2f} ± {auc_ci:.2f})",
|
||
|
|
)
|
||
|
|
plt.fill_between(
|
||
|
|
mean_fpr,
|
||
|
|
mean_tpr - std_tpr,
|
||
|
|
mean_tpr + std_tpr,
|
||
|
|
color="b",
|
||
|
|
alpha=0.2,
|
||
|
|
label="± 1 std. dev.",
|
||
|
|
)
|
||
|
|
|
||
|
|
# Plot each fold's ROC curve (optional)
|
||
|
|
for i, (fpr, tpr, _) in enumerate(roc_data):
|
||
|
|
plt.plot(fpr, tpr, lw=1, alpha=0.3, label=f"Fold {i + 1} ROC")
|
||
|
|
|
||
|
|
# Labels and legend
|
||
|
|
plt.plot([0, 1], [0, 1], "k--", label="Chance")
|
||
|
|
plt.xlabel("False Positive Rate")
|
||
|
|
plt.ylabel("True Positive Rate")
|
||
|
|
plt.title("ROC Curve with 5-Fold Cross-Validation")
|
||
|
|
plt.legend(loc="lower right")
|
||
|
|
plt.savefig("roc_curve_0_0.png")
|