24 lines
737 B
Python
24 lines
737 B
Python
|
|
def calculate_conv_dimensions(W_in, H_in, K, S, P):
|
||
|
|
"""
|
||
|
|
Calculate the output dimensions of a convolutional layer.
|
||
|
|
|
||
|
|
Parameters:
|
||
|
|
W_in (int): Width of the input image
|
||
|
|
H_in (int): Height of the input image
|
||
|
|
K (int): Size of the filter (assumed to be square)
|
||
|
|
S (int): Stride
|
||
|
|
P (int): Padding
|
||
|
|
|
||
|
|
Returns:
|
||
|
|
(int, int): Width and height of the output activation map
|
||
|
|
"""
|
||
|
|
W_out = (W_in - K + (2 * P)) / S + 1
|
||
|
|
H_out = (H_in - K + (2 * P)) / S + 1
|
||
|
|
|
||
|
|
return W_out, H_out
|
||
|
|
|
||
|
|
|
||
|
|
print(f"w, h = {calculate_conv_dimensions(W_in=2048, H_in=32, K=11, S=4, P=2)=}")
|
||
|
|
# w, h = calculate_conv_dimensions(W_in=2048, H_in=32, K=11, S=4, P=2)
|
||
|
|
# print(f"{calculate_conv_dimensions(W_in=w, H_in=h, K=11, S=4, P=2)=}")
|