Files
mt/tools/load_results.py

761 lines
26 KiB
Python
Raw Normal View History

2025-09-02 16:30:32 +02:00
from __future__ import annotations
import json
import pickle
from itertools import product
from pathlib import Path
from typing import Any, Dict, List, Optional
import numpy as np
import polars as pl
# --- configure your intended grid here (use the *canonical* strings used in df) ---
NETWORKS_EXPECTED = ["subter_LeNet", "subter_efficient"]
LATENT_DIMS_EXPECTED = [32, 64, 128, 256, 512, 768, 1024]
SEMI_LABELS_EXPECTED = [(0, 0), (50, 10), (500, 100)]
MODELS_EXPECTED = ["deepsad", "isoforest", "ocsvm"]
EVALS_EXPECTED = ["exp_based", "manual_based"]
# If k-fold is uniform, set it. If None, we infer it *per combo* from df.
EXPECTED_K_FOLD: int | None = None # e.g., 3
def add_shape_columns(df: pl.DataFrame) -> pl.DataFrame:
return df.with_columns(
# ROC lens
roc_fpr_len=pl.when(pl.col("roc_curve").is_null())
.then(None)
.otherwise(pl.col("roc_curve").struct.field("fpr").list.len()),
roc_tpr_len=pl.when(pl.col("roc_curve").is_null())
.then(None)
.otherwise(pl.col("roc_curve").struct.field("tpr").list.len()),
roc_thr_len=pl.when(pl.col("roc_curve").is_null())
.then(None)
.otherwise(pl.col("roc_curve").struct.field("thr").list.len()),
# PRC lens
prc_prec_len=pl.when(pl.col("prc_curve").is_null())
.then(None)
.otherwise(pl.col("prc_curve").struct.field("precision").list.len()),
prc_rec_len=pl.when(pl.col("prc_curve").is_null())
.then(None)
.otherwise(pl.col("prc_curve").struct.field("recall").list.len()),
prc_thr_len=pl.when(pl.col("prc_curve").is_null())
.then(None)
.otherwise(pl.col("prc_curve").struct.field("thr").list.len()),
# scores lens
scores_len=pl.when(pl.col("scores").is_null())
.then(None)
.otherwise(pl.col("scores").list.len()),
# deepsad-only arrays (None for others)
idxs_len=pl.when(pl.col("sample_indices").is_null())
.then(None)
.otherwise(pl.col("sample_indices").list.len()),
labels_len=pl.when(pl.col("sample_labels").is_null())
.then(None)
.otherwise(pl.col("sample_labels").list.len()),
vmask_len=pl.when(pl.col("valid_mask").is_null())
.then(None)
.otherwise(pl.col("valid_mask").list.len()),
)
def check_grid_coverage_and_shapes(
df: pl.DataFrame,
networks=NETWORKS_EXPECTED,
latent_dims=LATENT_DIMS_EXPECTED,
semi_labels=SEMI_LABELS_EXPECTED,
models=MODELS_EXPECTED,
evals=EVALS_EXPECTED,
expected_k_fold: int | None = EXPECTED_K_FOLD,
):
dfx = add_shape_columns(df)
# helper: get rows for a specific base combo
def subframe(net, lat, s_norm, s_anom, mdl, ev):
return dfx.filter(
(pl.col("network") == net)
& (pl.col("latent_dim") == lat)
& (pl.col("semi_normals") == s_norm)
& (pl.col("semi_anomalous") == s_anom)
& (pl.col("model") == mdl)
& (pl.col("eval") == ev)
)
missing = []
incomplete = [] # (combo, expected_folds, present_folds)
shape_inconsistent = [] # (combo, metric_name, values_by_fold)
cross_model_diffs = [] # (net, lat, semi, ev, metric_name, shapes_by_model)
# 1) Coverage + within-combo shapes
for net, lat, (s_norm, s_anom), mdl, ev in product(
networks, latent_dims, semi_labels, models, evals
):
sf = subframe(net, lat, s_norm, s_anom, mdl, ev).select(
"fold",
"k_fold_num",
"scores_len",
"roc_fpr_len",
"roc_tpr_len",
"roc_thr_len",
"prc_prec_len",
"prc_rec_len",
"prc_thr_len",
"idxs_len",
"labels_len",
"vmask_len",
)
if sf.height == 0:
missing.append(
dict(
network=net,
latent_dim=lat,
semi_normals=s_norm,
semi_anomalous=s_anom,
model=mdl,
eval=ev,
)
)
continue
# folds present vs expected
folds_present = sorted(sf.get_column("fold").unique().to_list())
if expected_k_fold is not None:
kexp = expected_k_fold
else:
# infer from rows (take max k_fold_num within this combo)
kexp = int(sf.get_column("k_fold_num").max())
all_expected_folds = list(range(kexp))
if folds_present != all_expected_folds:
incomplete.append(
dict(
network=net,
latent_dim=lat,
semi_normals=s_norm,
semi_anomalous=s_anom,
model=mdl,
eval=ev,
expected_folds=all_expected_folds,
present_folds=folds_present,
)
)
# shape consistency across folds (for this combo)
# collect distinct values per metric
shape_cols = [
"scores_len",
"roc_fpr_len",
"roc_tpr_len",
"roc_thr_len",
"prc_prec_len",
"prc_rec_len",
"prc_thr_len",
"idxs_len",
"labels_len",
"vmask_len",
]
for colname in shape_cols:
vals = sf.select(colname).to_series()
uniq = sorted({v for v in vals.to_list()})
# Allow None-only columns (e.g., deepsad-only fields for other models)
if len([u for u in uniq if u is not None]) > 1:
# store per-fold values to help debug
per_fold = (
sf.select("fold", pl.col(colname))
.sort("fold")
.to_dict(as_series=False)
)
shape_inconsistent.append(
dict(
network=net,
latent_dim=lat,
semi_normals=s_norm,
semi_anomalous=s_anom,
model=mdl,
eval=ev,
metric=colname,
per_fold=per_fold,
)
)
# 2) Cross-model comparability at fixed (net,lat,semi,eval)
# We compare shapes that *should* logically match across models:
# - scores_len (same number of test samples)
# - idxs/labels/vmask (only deepsad fills them; we tolerate None elsewhere)
# ROC/PRC binning can differ across models; we *report* those differences for awareness.
base_keys = (
df.select("network", "latent_dim", "semi_normals", "semi_anomalous", "eval")
.unique()
.iter_rows()
)
for net, lat, s_norm, s_anom, ev in base_keys:
rows = (
dfx.filter(
(pl.col("network") == net)
& (pl.col("latent_dim") == lat)
& (pl.col("semi_normals") == s_norm)
& (pl.col("semi_anomalous") == s_anom)
& (pl.col("eval") == ev)
)
.group_by("model")
.agg(
pl.col("scores_len").unique().alias("scores_len_set"),
pl.col("idxs_len").unique().alias("idxs_len_set"),
pl.col("labels_len").unique().alias("labels_len_set"),
pl.col("vmask_len").unique().alias("vmask_len_set"),
pl.col("roc_fpr_len").unique().alias("roc_fpr_len_set"),
pl.col("prc_prec_len").unique().alias("prc_prec_len_set"),
)
.to_dict(as_series=False)
)
if not rows:
continue
# normalize sets
mdls = rows["model"]
s_sets = [set(x) for x in rows["scores_len_set"]]
# compare scores_len across models (ignore None values)
s_normed = [tuple(sorted([v for v in s if v is not None])) for s in s_sets]
if len(set(s_normed)) > 1:
cross_model_diffs.append(
dict(
network=net,
latent_dim=lat,
semi_normals=s_norm,
semi_anomalous=s_anom,
eval=ev,
metric="scores_len",
by_model={m: sorted(list(s_sets[i])) for i, m in enumerate(mdls)},
)
)
# Report ROC/PRC binning diffs (expected)
roc_sets = [set(x) for x in rows["roc_fpr_len_set"]]
if len(set(tuple(sorted(ss)) for ss in roc_sets)) > 1:
cross_model_diffs.append(
dict(
network=net,
latent_dim=lat,
semi_normals=s_norm,
semi_anomalous=s_anom,
eval=ev,
metric="roc_fpr_len",
by_model={m: sorted(list(roc_sets[i])) for i, m in enumerate(mdls)},
)
)
prc_sets = [set(x) for x in rows["prc_prec_len_set"]]
if len(set(tuple(sorted(ss)) for ss in prc_sets)) > 1:
cross_model_diffs.append(
dict(
network=net,
latent_dim=lat,
semi_normals=s_norm,
semi_anomalous=s_anom,
eval=ev,
metric="prc_prec_len",
by_model={m: sorted(list(prc_sets[i])) for i, m in enumerate(mdls)},
)
)
# --- Print a readable report ---
print("\n=== GRID COVERAGE ===")
print(f"Missing combos: {len(missing)}")
for m in missing[:20]:
print(" ", m)
if len(missing) > 20:
print(f" ... (+{len(missing) - 20} more)")
print("\nIncomplete combos (folds missing):", len(incomplete))
for inc in incomplete[:20]:
print(
" ",
{
k: inc[k]
for k in [
"network",
"latent_dim",
"semi_normals",
"semi_anomalous",
"model",
"eval",
]
},
"expected",
inc["expected_folds"],
"present",
inc["present_folds"],
)
if len(incomplete) > 20:
print(f" ... (+{len(incomplete) - 20} more)")
print("\n=== WITHIN-COMBO SHAPE CONSISTENCY (across folds) ===")
print(f"Mismatching groups: {len(shape_inconsistent)}")
for s in shape_inconsistent[:15]:
hdr = {
k: s[k]
for k in [
"network",
"latent_dim",
"semi_normals",
"semi_anomalous",
"model",
"eval",
"metric",
]
}
print(" ", hdr, "values:", s["per_fold"])
if len(shape_inconsistent) > 15:
print(f" ... (+{len(shape_inconsistent) - 15} more)")
print("\n=== CROSS-MODEL COMPARABILITY (by shape) ===")
print(
f"Shape differences across models at fixed (net,lat,semi,eval): {len(cross_model_diffs)}"
)
for s in cross_model_diffs[:15]:
hdr = {
k: s[k]
for k in [
"network",
"latent_dim",
"semi_normals",
"semi_anomalous",
"eval",
"metric",
]
}
print(" ", hdr, "by_model:", s["by_model"])
if len(cross_model_diffs) > 15:
print(f" ... (+{len(cross_model_diffs) - 15} more)")
# Return the raw details if you want to use them programmatically
return {
"missing": missing,
"incomplete": incomplete,
"shape_inconsistent": shape_inconsistent,
"cross_model_diffs": cross_model_diffs,
}
# ------------------------------------------------------------
# Config you can tweak
# ------------------------------------------------------------
MODELS = ["deepsad", "isoforest", "ocsvm"]
EVALS = ["exp_based", "manual_based"]
SCHEMA_STATIC = {
# identifiers / dims
"network": pl.Utf8, # e.g. "LeNet", "efficient"
"latent_dim": pl.Int32,
"semi_normals": pl.Int32,
"semi_anomalous": pl.Int32,
"model": pl.Utf8, # "deepsad" | "isoforest" | "ocsvm"
"eval": pl.Utf8, # "exp_based" | "manual_based"
"fold": pl.Int32,
# metrics
"auc": pl.Float64,
"ap": pl.Float64,
# per-sample scores: list of (idx, label, score)
"scores": pl.List(
pl.Struct(
{
"sample_idx": pl.Int32, # dataloader idx
"orig_label": pl.Int8, # {-1,0,1}
"score": pl.Float64, # anomaly score
}
)
),
# curves (normalized)
"roc_curve": pl.Struct(
{
"fpr": pl.List(pl.Float64),
"tpr": pl.List(pl.Float64),
"thr": pl.List(pl.Float64),
}
),
"prc_curve": pl.Struct(
{
"precision": pl.List(pl.Float64),
"recall": pl.List(pl.Float64),
"thr": pl.List(pl.Float64), # may be len(precision)-1
}
),
# deepsad-only per-eval arrays (None for other models)
"sample_indices": pl.List(pl.Int32),
"sample_labels": pl.List(pl.Int8),
"valid_mask": pl.List(pl.Boolean),
# timings / housekeeping
"train_time": pl.Float64,
"test_time": pl.Float64,
"folder": pl.Utf8,
"k_fold_num": pl.Int32,
}
# ------------------------------------------------------------
# Helpers: curve/scores normalizers (tuples/ndarrays -> dict/list)
# ------------------------------------------------------------
def _tolist(x):
if x is None:
return None
if isinstance(x, np.ndarray):
return x.tolist()
if isinstance(x, (list, tuple)):
return list(x)
# best-effort scalar wrap
try:
return [x]
except Exception:
return None
def normalize_roc(obj: Any) -> Optional[dict]:
if obj is None:
return None
fpr = tpr = thr = None
if isinstance(obj, (tuple, list)):
if len(obj) >= 2:
fpr, tpr = _tolist(obj[0]), _tolist(obj[1])
if len(obj) >= 3:
thr = _tolist(obj[2])
elif isinstance(obj, dict):
fpr = _tolist(obj.get("fpr") or obj.get("x"))
tpr = _tolist(obj.get("tpr") or obj.get("y"))
thr = _tolist(obj.get("thr") or obj.get("thresholds"))
else:
return None
if fpr is None or tpr is None:
return None
return {"fpr": fpr, "tpr": tpr, "thr": thr}
def normalize_prc(obj: Any) -> Optional[dict]:
if obj is None:
return None
precision = recall = thr = None
if isinstance(obj, (tuple, list)):
if len(obj) >= 2:
precision, recall = _tolist(obj[0]), _tolist(obj[1])
if len(obj) >= 3:
thr = _tolist(obj[2])
elif isinstance(obj, dict):
precision = _tolist(obj.get("precision") or obj.get("y"))
recall = _tolist(obj.get("recall") or obj.get("x"))
thr = _tolist(obj.get("thr") or obj.get("thresholds"))
else:
return None
if precision is None or recall is None:
return None
return {"precision": precision, "recall": recall, "thr": thr}
def normalize_scores_to_struct(seq) -> Optional[List[dict]]:
"""
Input: list of (idx, label, score) tuples (as produced in your test()).
Output: list of dicts with keys sample_idx, orig_label, score.
"""
if seq is None:
return None
if isinstance(seq, np.ndarray):
seq = seq.tolist()
if not isinstance(seq, (list, tuple)):
return None
out: List[dict] = []
for item in seq:
if isinstance(item, (list, tuple)) and len(item) >= 3:
idx, lab, sc = item[0], item[1], item[2]
out.append(
{
"sample_idx": None if idx is None else int(idx),
"orig_label": None if lab is None else int(lab),
"score": None if sc is None else float(sc),
}
)
else:
# fallback: single numeric -> score
sc = (
float(item)
if isinstance(item, (int, float, np.integer, np.floating))
else None
)
out.append({"sample_idx": None, "orig_label": None, "score": sc})
return out
def normalize_int_list(a) -> Optional[List[int]]:
if a is None:
return None
if isinstance(a, np.ndarray):
a = a.tolist()
return list(a)
def normalize_bool_list(a) -> Optional[List[bool]]:
if a is None:
return None
if isinstance(a, np.ndarray):
a = a.tolist()
return [bool(x) for x in a]
# ------------------------------------------------------------
# Low-level: read one experiment folder
# ------------------------------------------------------------
def read_config(exp_dir: Path) -> dict:
cfg = exp_dir / "config.json"
with cfg.open("r") as f:
c = json.load(f)
if not c.get("k_fold"):
raise ValueError(f"{exp_dir.name}: not trained as k-fold")
return c
def read_pickle(p: Path) -> Any:
with p.open("rb") as f:
return pickle.load(f)
# ------------------------------------------------------------
# Extractors for each model
# ------------------------------------------------------------
def rows_from_deepsad(data: dict, evals: List[str]) -> Dict[str, dict]:
"""
deepsad under data['test'][eval], with extra per-eval arrays and AP present.
"""
out: Dict[str, dict] = {}
test = data.get("test", {})
for ev in evals:
evd = test.get(ev)
if not isinstance(evd, dict):
continue
out[ev] = {
"auc": float(evd["auc"])
if "auc" in evd and evd["auc"] is not None
else None,
"roc": normalize_roc(evd.get("roc")),
"prc": normalize_prc(evd.get("prc")),
"ap": float(evd["ap"]) if "ap" in evd and evd["ap"] is not None else None,
"scores": normalize_scores_to_struct(evd.get("scores")),
"sample_indices": normalize_int_list(evd.get("indices")),
"sample_labels": normalize_int_list(evd.get("labels")),
"valid_mask": normalize_bool_list(evd.get("valid_mask")),
"train_time": data.get("train", {}).get("time"),
"test_time": test.get("time"),
}
return out
def rows_from_isoforest(data: dict, evals: List[str]) -> Dict[str, dict]:
"""
Keys: test_auc_<eval>, test_roc_<eval>, test_prc_<eval>, test_ap_<eval>, test_scores_<eval>.
"""
out: Dict[str, dict] = {}
for ev in evals:
auc = data.get(f"test_auc_{ev}")
if auc is None:
continue
out[ev] = {
"auc": float(auc),
"roc": normalize_roc(data.get(f"test_roc_{ev}")),
"prc": normalize_prc(data.get(f"test_prc_{ev}")),
"ap": float(data.get(f"test_ap_{ev}"))
if data.get(f"test_ap_{ev}") is not None
else None,
"scores": normalize_scores_to_struct(data.get(f"test_scores_{ev}")),
"sample_indices": None,
"sample_labels": None,
"valid_mask": None,
"train_time": data.get("train_time"),
"test_time": data.get("test_time"),
}
return out
def rows_from_ocsvm_default(data: dict, evals: List[str]) -> Dict[str, dict]:
"""
Default OCSVM only (ignore linear variant entirely).
"""
out: Dict[str, dict] = {}
for ev in evals:
auc = data.get(f"test_auc_{ev}")
if auc is None:
continue
out[ev] = {
"auc": float(auc),
"roc": normalize_roc(data.get(f"test_roc_{ev}")),
"prc": normalize_prc(data.get(f"test_prc_{ev}")),
"ap": float(data.get(f"test_ap_{ev}"))
if data.get(f"test_ap_{ev}") is not None
else None,
"scores": normalize_scores_to_struct(data.get(f"test_scores_{ev}")),
"sample_indices": None,
"sample_labels": None,
"valid_mask": None,
"train_time": data.get("train_time"),
"test_time": data.get("test_time"),
}
return out
# ------------------------------------------------------------
# Build the Polars DataFrame
# ------------------------------------------------------------
def build_results_frame(root: Path) -> pl.DataFrame:
"""
Walks experiment subdirs under `root`. For each (model, fold) it adds rows:
Columns (SCHEMA_STATIC):
network, latent_dim, semi_normals, semi_anomalous,
model, eval, fold,
auc, ap, scores{sample_idx,orig_label,score},
roc_curve{fpr,tpr,thr}, prc_curve{precision,recall,thr},
sample_indices, sample_labels, valid_mask,
train_time, test_time,
folder, k_fold_num
"""
rows: List[dict] = []
exp_dirs = [p for p in root.iterdir() if p.is_dir()]
for exp_dir in sorted(exp_dirs):
try:
cfg = read_config(exp_dir)
except Exception as e:
print(f"[warn] skipping {exp_dir.name}: {e}")
continue
network = cfg.get("net_name")
latent_dim = int(cfg.get("latent_space_dim"))
semi_normals = int(cfg.get("num_known_normal"))
semi_anomalous = int(cfg.get("num_known_outlier"))
k = int(cfg.get("k_fold_num"))
for model in MODELS:
for fold in range(k):
pkl = exp_dir / f"results_{model}_{fold}.pkl"
if not pkl.exists():
continue
try:
data = read_pickle(pkl)
except Exception as e:
print(f"[warn] failed to read {pkl.name}: {e}")
continue
if model == "deepsad":
per_eval = rows_from_deepsad(data, EVALS) # eval -> dict
elif model == "isoforest":
per_eval = rows_from_isoforest(data, EVALS) # eval -> dict
elif model == "ocsvm":
per_eval = rows_from_ocsvm_default(data, EVALS) # eval -> dict
else:
per_eval = {}
for ev, vals in per_eval.items():
rows.append(
{
"network": network,
"latent_dim": latent_dim,
"semi_normals": semi_normals,
"semi_anomalous": semi_anomalous,
"model": model,
"eval": ev,
"fold": fold,
"auc": vals["auc"],
"ap": vals["ap"],
"scores": vals["scores"],
"roc_curve": vals["roc"],
"prc_curve": vals["prc"],
"sample_indices": vals.get("sample_indices"),
"sample_labels": vals.get("sample_labels"),
"valid_mask": vals.get("valid_mask"),
"train_time": vals["train_time"],
"test_time": vals["test_time"],
"folder": str(exp_dir),
"k_fold_num": k,
}
)
# If empty, return a typed empty frame
if not rows:
return pl.DataFrame(schema=SCHEMA_STATIC)
df = pl.DataFrame(rows, schema=SCHEMA_STATIC)
# Cast to efficient dtypes (categoricals etc.) no extra sanitation
df = df.with_columns(
pl.col("network", "model", "eval").cast(pl.Categorical),
pl.col(
"latent_dim", "semi_normals", "semi_anomalous", "fold", "k_fold_num"
).cast(pl.Int32),
pl.col("auc", "ap", "train_time", "test_time").cast(pl.Float64),
# NOTE: no cast on 'scores' here; it's already List(Struct) per schema.
)
return df
# ------------------------------------------------------------
# Example “analysis-ready” queries (Polars idioms)
# ------------------------------------------------------------
def demo_queries(df: pl.DataFrame):
# q1: lazy is fine, then collect
q1 = (
df.lazy()
.filter(
(pl.col("network") == "LeNet")
& (pl.col("latent_dim") == 1024)
& (pl.col("semi_normals") == 0)
& (pl.col("semi_anomalous") == 0)
& (pl.col("eval") == "exp_based")
)
.group_by(["model"])
.agg(pl.col("auc").mean().alias("mean_auc"))
.sort(["mean_auc"], descending=True)
.collect()
)
# q2: do the filtering eagerly, then pivot (LazyFrame has no .pivot)
base = df.filter(
(pl.col("model") == "deepsad")
& (pl.col("eval") == "exp_based")
& (pl.col("network") == "LeNet")
& (pl.col("semi_normals") == 0)
& (pl.col("semi_anomalous") == 0)
).select("fold", "latent_dim", "auc")
q2 = base.pivot(
values="auc",
index="fold",
columns="latent_dim",
aggregate_function="first", # or "mean" if duplicates exist
).sort("fold")
# roc_subset: eager filter/select, then explode struct fields
roc_subset = (
df.filter(
(pl.col("model") == "ocsvm")
& (pl.col("eval") == "manual_based")
& (pl.col("network") == "efficient")
& (pl.col("latent_dim") == 1024)
& (pl.col("semi_normals") == 0)
& (pl.col("semi_anomalous") == 0)
)
.select("fold", "roc_curve")
.with_columns(
pl.col("roc_curve").struct.field("fpr").alias("fpr"),
pl.col("roc_curve").struct.field("tpr").alias("tpr"),
pl.col("roc_curve").struct.field("thr").alias("thr"),
)
)
return q1, q2, roc_subset
def main():
root = Path("/home/fedex/mt/results/done")
df = build_results_frame(root)
q1, q2, roc_subset = demo_queries(df)
print(df.shape, df.head())
# --- run it ---
report = check_grid_coverage_and_shapes(df)
print(report)
if __name__ == "__main__":
main()