Files
mt/Deep-SAD-PyTorch/src/onnx_export.py

36 lines
1.3 KiB
Python
Raw Normal View History

import torch
import torch.onnx
from networks.mnist_LeNet import MNIST_LeNet_Autoencoder
def export_model_to_onnx(model, filepath, input_shape=(1, 1, 28, 28)):
model.eval() # Set the model to evaluation mode
dummy_input = torch.randn(input_shape) # Create a dummy input tensor
torch.onnx.export(
model, # model being run
dummy_input, # model input (or a tuple for multiple inputs)
filepath, # where to save the model (can be a file or file-like object)
export_params=True, # store the trained parameter weights inside the model file
opset_version=11, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=["input"], # the model's input names
output_names=["output"], # the model's output names
dynamic_axes={
"input": {0: "batch_size"}, # variable length axes
"output": {0: "batch_size"},
},
)
if __name__ == "__main__":
# Initialize the autoencoder model
autoencoder = MNIST_LeNet_Autoencoder(rep_dim=32)
# Define the file path where the ONNX model will be saved
onnx_file_path = "mnist_lenet_autoencoder.onnx"
# Export the model
export_model_to_onnx(autoencoder, onnx_file_path)
print(f"Model has been exported to {onnx_file_path}")