Files
mt/Deep-SAD-PyTorch/src/main.py

442 lines
14 KiB
Python
Raw Normal View History

2024-06-28 07:42:12 +02:00
import click
import torch
import logging
import random
import numpy as np
from utils.config import Config
from utils.visualization.plot_images_grid import plot_images_grid
from DeepSAD import DeepSAD
from datasets.main import load_dataset
################################################################################
# Settings
################################################################################
@click.command()
2024-06-28 11:36:46 +02:00
@click.argument(
"dataset_name",
type=click.Choice(
[
"mnist",
"elpv",
"subter",
2024-06-28 11:36:46 +02:00
"fmnist",
"cifar10",
"arrhythmia",
"cardio",
"satellite",
"satimage-2",
"shuttle",
"thyroid",
]
),
)
@click.argument(
"net_name",
type=click.Choice(
[
"mnist_LeNet",
"elpv_LeNet",
"subter_LeNet",
2024-06-28 11:36:46 +02:00
"fmnist_LeNet",
"cifar10_LeNet",
"arrhythmia_mlp",
"cardio_mlp",
"satellite_mlp",
"satimage-2_mlp",
"shuttle_mlp",
"thyroid_mlp",
]
),
)
@click.argument("xp_path", type=click.Path(exists=True))
@click.argument("data_path", type=click.Path(exists=True))
@click.option(
"--load_config",
type=click.Path(exists=True),
default=None,
help="Config JSON-file path (default: None).",
)
@click.option(
"--load_model",
type=click.Path(exists=True),
default=None,
help="Model file path (default: None).",
)
@click.option(
"--eta",
type=float,
default=1.0,
help="Deep SAD hyperparameter eta (must be 0 < eta).",
)
@click.option(
"--ratio_known_normal",
type=float,
default=0.0,
help="Ratio of known (labeled) normal training examples.",
)
@click.option(
"--ratio_known_outlier",
type=float,
default=0.0,
help="Ratio of known (labeled) anomalous training examples.",
)
@click.option(
"--ratio_pollution",
type=float,
default=0.0,
help="Pollution ratio of unlabeled training data with unknown (unlabeled) anomalies.",
)
@click.option(
"--device",
type=str,
default="cuda",
help='Computation device to use ("cpu", "cuda", "cuda:2", etc.).',
)
@click.option(
"--seed", type=int, default=-1, help="Set seed. If -1, use randomization."
)
@click.option(
"--optimizer_name",
type=click.Choice(["adam"]),
default="adam",
help="Name of the optimizer to use for Deep SAD network training.",
)
@click.option(
"--lr",
type=float,
default=0.001,
help="Initial learning rate for Deep SAD network training. Default=0.001",
)
@click.option("--n_epochs", type=int, default=50, help="Number of epochs to train.")
@click.option(
"--lr_milestone",
type=int,
default=[0],
2024-06-28 11:36:46 +02:00
multiple=True,
help="Lr scheduler milestones at which lr is multiplied by 0.1. Can be multiple and must be increasing.",
)
@click.option(
"--batch_size", type=int, default=128, help="Batch size for mini-batch training."
)
@click.option(
"--weight_decay",
type=float,
default=1e-6,
help="Weight decay (L2 penalty) hyperparameter for Deep SAD objective.",
)
@click.option(
"--pretrain",
type=bool,
default=True,
help="Pretrain neural network parameters via autoencoder.",
)
@click.option(
"--ae_optimizer_name",
type=click.Choice(["adam"]),
default="adam",
help="Name of the optimizer to use for autoencoder pretraining.",
)
@click.option(
"--ae_lr",
type=float,
default=0.001,
help="Initial learning rate for autoencoder pretraining. Default=0.001",
)
@click.option(
"--ae_n_epochs",
type=int,
default=100,
help="Number of epochs to train autoencoder.",
)
@click.option(
"--ae_lr_milestone",
type=int,
default=[0],
2024-06-28 11:36:46 +02:00
multiple=True,
help="Lr scheduler milestones at which lr is multiplied by 0.1. Can be multiple and must be increasing.",
)
@click.option(
"--ae_batch_size",
type=int,
default=128,
help="Batch size for mini-batch autoencoder training.",
)
@click.option(
"--ae_weight_decay",
type=float,
default=1e-6,
help="Weight decay (L2 penalty) hyperparameter for autoencoder objective.",
)
@click.option(
"--num_threads",
type=int,
default=0,
help="Number of threads used for parallelizing CPU operations. 0 means that all resources are used.",
)
@click.option(
"--n_jobs_dataloader",
type=int,
default=0,
help="Number of workers for data loading. 0 means that the data will be loaded in the main process.",
)
@click.option(
"--normal_class",
type=int,
default=0,
help="Specify the normal class of the dataset (all other classes are considered anomalous).",
)
@click.option(
"--known_outlier_class",
type=int,
default=1,
help="Specify the known outlier class of the dataset for semi-supervised anomaly detection.",
)
@click.option(
"--n_known_outlier_classes",
type=int,
default=0,
help="Number of known outlier classes."
"If 0, no anomalies are known."
"If 1, outlier class as specified in --known_outlier_class option."
"If > 1, the specified number of outlier classes will be sampled at random.",
)
def main(
dataset_name,
net_name,
xp_path,
data_path,
load_config,
load_model,
eta,
ratio_known_normal,
ratio_known_outlier,
ratio_pollution,
device,
seed,
optimizer_name,
lr,
n_epochs,
lr_milestone,
batch_size,
weight_decay,
pretrain,
ae_optimizer_name,
ae_lr,
ae_n_epochs,
ae_lr_milestone,
ae_batch_size,
ae_weight_decay,
num_threads,
n_jobs_dataloader,
normal_class,
known_outlier_class,
n_known_outlier_classes,
):
2024-06-28 07:42:12 +02:00
"""
Deep SAD, a method for deep semi-supervised anomaly detection.
:arg DATASET_NAME: Name of the dataset to load.
:arg NET_NAME: Name of the neural network to use.
:arg XP_PATH: Export path for logging the experiment.
:arg DATA_PATH: Root path of data.
"""
# Get configuration
cfg = Config(locals().copy())
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger()
logger.setLevel(logging.INFO)
2024-06-28 11:36:46 +02:00
formatter = logging.Formatter(
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
log_file = xp_path + "/log.txt"
2024-06-28 07:42:12 +02:00
file_handler = logging.FileHandler(log_file)
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
# Print paths
2024-06-28 11:36:46 +02:00
logger.info("Log file is %s" % log_file)
logger.info("Data path is %s" % data_path)
logger.info("Export path is %s" % xp_path)
2024-06-28 07:42:12 +02:00
# Print experimental setup
2024-06-28 11:36:46 +02:00
logger.info("Dataset: %s" % dataset_name)
logger.info("Normal class: %d" % normal_class)
logger.info("Ratio of labeled normal train samples: %.2f" % ratio_known_normal)
logger.info("Ratio of labeled anomalous samples: %.2f" % ratio_known_outlier)
logger.info("Pollution ratio of unlabeled train data: %.2f" % ratio_pollution)
2024-06-28 07:42:12 +02:00
if n_known_outlier_classes == 1:
2024-06-28 11:36:46 +02:00
logger.info("Known anomaly class: %d" % known_outlier_class)
2024-06-28 07:42:12 +02:00
else:
2024-06-28 11:36:46 +02:00
logger.info("Number of known anomaly classes: %d" % n_known_outlier_classes)
logger.info("Network: %s" % net_name)
2024-06-28 07:42:12 +02:00
# If specified, load experiment config from JSON-file
if load_config:
cfg.load_config(import_json=load_config)
2024-06-28 11:36:46 +02:00
logger.info("Loaded configuration from %s." % load_config)
2024-06-28 07:42:12 +02:00
# Print model configuration
2024-06-28 11:36:46 +02:00
logger.info("Eta-parameter: %.2f" % cfg.settings["eta"])
2024-06-28 07:42:12 +02:00
# Set seed
2024-06-28 11:36:46 +02:00
if cfg.settings["seed"] != -1:
random.seed(cfg.settings["seed"])
np.random.seed(cfg.settings["seed"])
torch.manual_seed(cfg.settings["seed"])
torch.cuda.manual_seed(cfg.settings["seed"])
2024-06-28 07:42:12 +02:00
torch.backends.cudnn.deterministic = True
2024-06-28 11:36:46 +02:00
logger.info("Set seed to %d." % cfg.settings["seed"])
2024-06-28 07:42:12 +02:00
# Default device to 'cpu' if cuda is not available
if not torch.cuda.is_available():
2024-06-28 11:36:46 +02:00
device = "cpu"
2024-06-28 07:42:12 +02:00
# Set the number of threads used for parallelizing CPU operations
if num_threads > 0:
torch.set_num_threads(num_threads)
2024-06-28 11:36:46 +02:00
logger.info("Computation device: %s" % device)
logger.info("Number of threads: %d" % num_threads)
logger.info("Number of dataloader workers: %d" % n_jobs_dataloader)
2024-06-28 07:42:12 +02:00
# Load data
2024-06-28 11:36:46 +02:00
dataset = load_dataset(
dataset_name,
data_path,
normal_class,
known_outlier_class,
n_known_outlier_classes,
ratio_known_normal,
ratio_known_outlier,
ratio_pollution,
random_state=np.random.RandomState(cfg.settings["seed"]),
)
2024-06-28 07:42:12 +02:00
# Log random sample of known anomaly classes if more than 1 class
if n_known_outlier_classes > 1:
2024-06-28 11:36:46 +02:00
logger.info("Known anomaly classes: %s" % (dataset.known_outlier_classes,))
2024-06-28 07:42:12 +02:00
# Initialize DeepSAD model and set neural network phi
2024-06-28 11:36:46 +02:00
deepSAD = DeepSAD(cfg.settings["eta"])
2024-06-28 07:42:12 +02:00
deepSAD.set_network(net_name)
# If specified, load Deep SAD model (center c, network weights, and possibly autoencoder weights)
if load_model:
deepSAD.load_model(model_path=load_model, load_ae=True, map_location=device)
2024-06-28 11:36:46 +02:00
logger.info("Loading model from %s." % load_model)
2024-06-28 07:42:12 +02:00
2024-06-28 11:36:46 +02:00
logger.info("Pretraining: %s" % pretrain)
2024-06-28 07:42:12 +02:00
if pretrain:
# Log pretraining details
2024-06-28 11:36:46 +02:00
logger.info("Pretraining optimizer: %s" % cfg.settings["ae_optimizer_name"])
logger.info("Pretraining learning rate: %g" % cfg.settings["ae_lr"])
logger.info("Pretraining epochs: %d" % cfg.settings["ae_n_epochs"])
logger.info(
"Pretraining learning rate scheduler milestones: %s"
% (cfg.settings["ae_lr_milestone"],)
)
logger.info("Pretraining batch size: %d" % cfg.settings["ae_batch_size"])
logger.info("Pretraining weight decay: %g" % cfg.settings["ae_weight_decay"])
2024-06-28 07:42:12 +02:00
# Pretrain model on dataset (via autoencoder)
2024-06-28 11:36:46 +02:00
deepSAD.pretrain(
dataset,
optimizer_name=cfg.settings["ae_optimizer_name"],
lr=cfg.settings["ae_lr"],
n_epochs=cfg.settings["ae_n_epochs"],
lr_milestones=cfg.settings["ae_lr_milestone"],
batch_size=cfg.settings["ae_batch_size"],
weight_decay=cfg.settings["ae_weight_decay"],
device=device,
n_jobs_dataloader=n_jobs_dataloader,
)
2024-06-28 07:42:12 +02:00
# Save pretraining results
2024-06-28 11:36:46 +02:00
deepSAD.save_ae_results(export_json=xp_path + "/ae_results.json")
2024-06-28 07:42:12 +02:00
# Log training details
2024-06-28 11:36:46 +02:00
logger.info("Training optimizer: %s" % cfg.settings["optimizer_name"])
logger.info("Training learning rate: %g" % cfg.settings["lr"])
logger.info("Training epochs: %d" % cfg.settings["n_epochs"])
logger.info(
"Training learning rate scheduler milestones: %s"
% (cfg.settings["lr_milestone"],)
)
logger.info("Training batch size: %d" % cfg.settings["batch_size"])
logger.info("Training weight decay: %g" % cfg.settings["weight_decay"])
2024-06-28 07:42:12 +02:00
# Train model on dataset
2024-06-28 11:36:46 +02:00
deepSAD.train(
dataset,
optimizer_name=cfg.settings["optimizer_name"],
lr=cfg.settings["lr"],
n_epochs=cfg.settings["n_epochs"],
lr_milestones=cfg.settings["lr_milestone"],
batch_size=cfg.settings["batch_size"],
weight_decay=cfg.settings["weight_decay"],
device=device,
n_jobs_dataloader=n_jobs_dataloader,
)
2024-06-28 07:42:12 +02:00
# Test model
deepSAD.test(dataset, device=device, n_jobs_dataloader=n_jobs_dataloader)
# Save results, model, and configuration
2024-06-28 11:36:46 +02:00
deepSAD.save_results(export_json=xp_path + "/results.json")
deepSAD.save_model(export_model=xp_path + "/model.tar")
cfg.save_config(export_json=xp_path + "/config.json")
2024-06-28 07:42:12 +02:00
# Plot most anomalous and most normal test samples
2024-06-28 11:36:46 +02:00
indices, labels, scores = zip(*deepSAD.results["test_scores"])
2024-06-28 07:42:12 +02:00
indices, labels, scores = np.array(indices), np.array(labels), np.array(scores)
idx_all_sorted = indices[np.argsort(scores)] # from lowest to highest score
2024-06-28 11:36:46 +02:00
idx_normal_sorted = indices[labels == 0][
np.argsort(scores[labels == 0])
] # from lowest to highest score
2024-06-28 07:42:12 +02:00
if dataset_name in ("mnist", "fmnist", "cifar10", "elpv"):
2024-06-28 07:42:12 +02:00
if dataset_name in ("mnist", "fmnist", "elpv"):
2024-06-28 07:42:12 +02:00
X_all_low = dataset.test_set.data[idx_all_sorted[:32], ...].unsqueeze(1)
X_all_high = dataset.test_set.data[idx_all_sorted[-32:], ...].unsqueeze(1)
2024-06-28 11:36:46 +02:00
X_normal_low = dataset.test_set.data[idx_normal_sorted[:32], ...].unsqueeze(
1
)
X_normal_high = dataset.test_set.data[
idx_normal_sorted[-32:], ...
].unsqueeze(1)
2024-06-28 07:42:12 +02:00
2024-06-28 11:36:46 +02:00
if dataset_name == "cifar10":
X_all_low = torch.tensor(
np.transpose(
dataset.test_set.data[idx_all_sorted[:32], ...], (0, 3, 1, 2)
)
)
X_all_high = torch.tensor(
np.transpose(
dataset.test_set.data[idx_all_sorted[-32:], ...], (0, 3, 1, 2)
)
)
X_normal_low = torch.tensor(
np.transpose(
dataset.test_set.data[idx_normal_sorted[:32], ...], (0, 3, 1, 2)
)
)
X_normal_high = torch.tensor(
np.transpose(
dataset.test_set.data[idx_normal_sorted[-32:], ...], (0, 3, 1, 2)
)
)
2024-06-28 07:42:12 +02:00
2024-06-28 11:36:46 +02:00
plot_images_grid(X_all_low, export_img=xp_path + "/all_low", padding=2)
plot_images_grid(X_all_high, export_img=xp_path + "/all_high", padding=2)
plot_images_grid(X_normal_low, export_img=xp_path + "/normals_low", padding=2)
plot_images_grid(X_normal_high, export_img=xp_path + "/normals_high", padding=2)
2024-06-28 07:42:12 +02:00
2024-06-28 11:36:46 +02:00
if __name__ == "__main__":
2024-06-28 07:42:12 +02:00
main()