Files
mt/tools/demo_loaded_data.py

75 lines
2.2 KiB
Python
Raw Normal View History

from pathlib import Path
import polars as pl
2025-09-10 19:41:00 +02:00
from plot_scripts.load_results import (
load_pretraining_results_dataframe,
load_results_dataframe,
)
# ------------------------------------------------------------
# Example “analysis-ready” queries (Polars idioms)
# ------------------------------------------------------------
def demo_queries(df: pl.DataFrame):
# q1: lazy is fine, then collect
q1 = (
df.lazy()
.filter(
(pl.col("network") == "LeNet")
& (pl.col("latent_dim") == 1024)
& (pl.col("semi_normals") == 0)
& (pl.col("semi_anomalous") == 0)
& (pl.col("eval") == "exp_based")
)
.group_by(["model"])
.agg(pl.col("auc").mean().alias("mean_auc"))
.sort(["mean_auc"], descending=True)
.collect()
)
# q2: do the filtering eagerly, then pivot (LazyFrame has no .pivot)
base = df.filter(
(pl.col("model") == "deepsad")
& (pl.col("eval") == "exp_based")
& (pl.col("network") == "LeNet")
& (pl.col("semi_normals") == 0)
& (pl.col("semi_anomalous") == 0)
).select("fold", "latent_dim", "auc")
q2 = base.pivot(
values="auc",
index="fold",
columns="latent_dim",
aggregate_function="first", # or "mean" if duplicates exist
).sort("fold")
# roc_subset: eager filter/select, then explode struct fields
roc_subset = (
df.filter(
(pl.col("model") == "ocsvm")
& (pl.col("eval") == "manual_based")
& (pl.col("network") == "efficient")
& (pl.col("latent_dim") == 1024)
& (pl.col("semi_normals") == 0)
& (pl.col("semi_anomalous") == 0)
)
.select("fold", "roc_curve")
.with_columns(
pl.col("roc_curve").struct.field("fpr").alias("fpr"),
pl.col("roc_curve").struct.field("tpr").alias("tpr"),
pl.col("roc_curve").struct.field("thr").alias("thr"),
)
)
return q1, q2, roc_subset
def main():
root = Path("/home/fedex/mt/results/done")
df = load_results_dataframe(root, allow_cache=True)
demo_queries(df)
if __name__ == "__main__":
main()