Files
mt/Deep-SAD-PyTorch/src/base/base_dataset.py

27 lines
1006 B
Python
Raw Normal View History

2024-06-28 07:42:12 +02:00
from abc import ABC, abstractmethod
from torch.utils.data import DataLoader
class BaseADDataset(ABC):
"""Anomaly detection dataset base class."""
def __init__(self, root: str):
super().__init__()
self.root = root # root path to data
self.n_classes = 2 # 0: normal, 1: outlier
self.normal_classes = None # tuple with original class labels that define the normal class
self.outlier_classes = None # tuple with original class labels that define the outlier class
self.train_set = None # must be of type torch.utils.data.Dataset
self.test_set = None # must be of type torch.utils.data.Dataset
@abstractmethod
def loaders(self, batch_size: int, shuffle_train=True, shuffle_test=False, num_workers: int = 0) -> (
DataLoader, DataLoader):
"""Implement data loaders of type torch.utils.data.DataLoader for train_set and test_set."""
pass
def __repr__(self):
return self.__class__.__name__