67 lines
3.5 KiB
Python
67 lines
3.5 KiB
Python
|
|
import torch
|
||
|
|
import numpy as np
|
||
|
|
|
||
|
|
|
||
|
|
def create_semisupervised_setting(labels, normal_classes, outlier_classes, known_outlier_classes,
|
||
|
|
ratio_known_normal, ratio_known_outlier, ratio_pollution):
|
||
|
|
"""
|
||
|
|
Create a semi-supervised data setting.
|
||
|
|
:param labels: np.array with labels of all dataset samples
|
||
|
|
:param normal_classes: tuple with normal class labels
|
||
|
|
:param outlier_classes: tuple with anomaly class labels
|
||
|
|
:param known_outlier_classes: tuple with known (labeled) anomaly class labels
|
||
|
|
:param ratio_known_normal: the desired ratio of known (labeled) normal samples
|
||
|
|
:param ratio_known_outlier: the desired ratio of known (labeled) anomalous samples
|
||
|
|
:param ratio_pollution: the desired pollution ratio of the unlabeled data with unknown (unlabeled) anomalies.
|
||
|
|
:return: tuple with list of sample indices, list of original labels, and list of semi-supervised labels
|
||
|
|
"""
|
||
|
|
idx_normal = np.argwhere(np.isin(labels, normal_classes)).flatten()
|
||
|
|
idx_outlier = np.argwhere(np.isin(labels, outlier_classes)).flatten()
|
||
|
|
idx_known_outlier_candidates = np.argwhere(np.isin(labels, known_outlier_classes)).flatten()
|
||
|
|
|
||
|
|
n_normal = len(idx_normal)
|
||
|
|
|
||
|
|
# Solve system of linear equations to obtain respective number of samples
|
||
|
|
a = np.array([[1, 1, 0, 0],
|
||
|
|
[(1-ratio_known_normal), -ratio_known_normal, -ratio_known_normal, -ratio_known_normal],
|
||
|
|
[-ratio_known_outlier, -ratio_known_outlier, -ratio_known_outlier, (1-ratio_known_outlier)],
|
||
|
|
[0, -ratio_pollution, (1-ratio_pollution), 0]])
|
||
|
|
b = np.array([n_normal, 0, 0, 0])
|
||
|
|
x = np.linalg.solve(a, b)
|
||
|
|
|
||
|
|
# Get number of samples
|
||
|
|
n_known_normal = int(x[0])
|
||
|
|
n_unlabeled_normal = int(x[1])
|
||
|
|
n_unlabeled_outlier = int(x[2])
|
||
|
|
n_known_outlier = int(x[3])
|
||
|
|
|
||
|
|
# Sample indices
|
||
|
|
perm_normal = np.random.permutation(n_normal)
|
||
|
|
perm_outlier = np.random.permutation(len(idx_outlier))
|
||
|
|
perm_known_outlier = np.random.permutation(len(idx_known_outlier_candidates))
|
||
|
|
|
||
|
|
idx_known_normal = idx_normal[perm_normal[:n_known_normal]].tolist()
|
||
|
|
idx_unlabeled_normal = idx_normal[perm_normal[n_known_normal:n_known_normal+n_unlabeled_normal]].tolist()
|
||
|
|
idx_unlabeled_outlier = idx_outlier[perm_outlier[:n_unlabeled_outlier]].tolist()
|
||
|
|
idx_known_outlier = idx_known_outlier_candidates[perm_known_outlier[:n_known_outlier]].tolist()
|
||
|
|
|
||
|
|
# Get original class labels
|
||
|
|
labels_known_normal = labels[idx_known_normal].tolist()
|
||
|
|
labels_unlabeled_normal = labels[idx_unlabeled_normal].tolist()
|
||
|
|
labels_unlabeled_outlier = labels[idx_unlabeled_outlier].tolist()
|
||
|
|
labels_known_outlier = labels[idx_known_outlier].tolist()
|
||
|
|
|
||
|
|
# Get semi-supervised setting labels
|
||
|
|
semi_labels_known_normal = np.ones(n_known_normal).astype(np.int32).tolist()
|
||
|
|
semi_labels_unlabeled_normal = np.zeros(n_unlabeled_normal).astype(np.int32).tolist()
|
||
|
|
semi_labels_unlabeled_outlier = np.zeros(n_unlabeled_outlier).astype(np.int32).tolist()
|
||
|
|
semi_labels_known_outlier = (-np.ones(n_known_outlier).astype(np.int32)).tolist()
|
||
|
|
|
||
|
|
# Create final lists
|
||
|
|
list_idx = idx_known_normal + idx_unlabeled_normal + idx_unlabeled_outlier + idx_known_outlier
|
||
|
|
list_labels = labels_known_normal + labels_unlabeled_normal + labels_unlabeled_outlier + labels_known_outlier
|
||
|
|
list_semi_labels = (semi_labels_known_normal + semi_labels_unlabeled_normal + semi_labels_unlabeled_outlier
|
||
|
|
+ semi_labels_known_outlier)
|
||
|
|
|
||
|
|
return list_idx, list_labels, list_semi_labels
|