Files
mt/thesis/third_party/PlotNeuralNet/deepsad/arch_ef_decoder.py

190 lines
3.9 KiB
Python
Raw Normal View History

# subter_lenet_arch.py
# Requires running from inside the PlotNeuralNet repo, like: python3 ../subter_lenet_arch.py
import sys, argparse
sys.path.append("../") # import pycore from repo root
from pycore.tikzeng import *
parser = argparse.ArgumentParser()
parser.add_argument("--rep_dim", type=int, default=1024, help="latent size for FC")
args = parser.parse_args()
REP = int(args.rep_dim)
# Visual scales so the huge width doesn't dominate the figure
H32, H16, H8, H1 = 26, 18, 12, 1
D2048, D1024, D512, D256, D128, D1 = 52, 36, 24, 12, 6, 1
W1, W4, W8, W16, W32 = 1, 2, 2, 4, 8
arch = [
to_head(".."),
to_cor(),
to_begin(),
to_Conv(
"latent",
n_filer="",
s_filer="latent dim",
offset="(2,0,0)",
to="(0,0,0)",
height=H8 * 1.6,
depth=D1,
width=W1,
caption=f"Latent Space",
),
# to_connection("fc1", "latent"),
# --------------------------- DECODER ---------------------------
# FC back to 16384
to_fc(
"fc3",
n_filer="{{8×128×8}}",
offset="(2,0,0)",
to="(latent-east)",
height=H1,
depth=D512,
width=W1,
caption=f"FC",
),
to_Conv(
"unsqueeze",
s_filer="",
n_filer=32,
offset="(2,0,0)",
to="(fc3-east)",
height=H8,
depth=D128,
width=W32,
caption="unsqueeze",
),
# to_connection("latent", "fc3"),
# Reshape to 4×8×512
to_UnPool(
"up1",
offset="(2,0,0)",
to="(unsqueeze-east)",
height=H16,
depth=D256,
width=W32,
caption="",
),
to_Conv(
"dwdeconv1",
s_filer="",
n_filer=1,
offset="(0,0,0)",
to="(up1-east)",
height=H16,
depth=D256,
width=W1,
caption="deconv1",
),
to_Conv(
"dwdeconv2",
s_filer="{{256×16}}",
n_filer=32,
offset="(0,0,0)",
to="(dwdeconv1-east)",
height=H16,
depth=D256,
width=W32,
caption="",
),
to_UnPool(
"up2",
offset="(2,0,0)",
to="(dwdeconv2-east)",
height=H16,
depth=D1024,
width=W32,
caption="",
),
to_Conv(
"dwdeconv3",
s_filer="",
n_filer=1,
offset="(0,0,0)",
to="(up2-east)",
height=H16,
depth=D1024,
width=W1,
caption="deconv2",
),
to_Conv(
"dwdeconv4",
s_filer="{{1024×16}}",
n_filer=16,
offset="(0,0,0)",
to="(dwdeconv3-east)",
height=H16,
depth=D1024,
width=W16,
caption="",
),
to_UnPool(
"up3",
offset="(2,0,0)",
to="(dwdeconv4-east)",
height=H32,
depth=D2048,
width=W16,
caption="",
),
to_Conv(
"dwdeconv5",
s_filer="",
n_filer=1,
offset="(0,0,0)",
to="(up3-east)",
height=H32,
depth=D2048,
width=W1,
caption="deconv3",
),
to_Conv(
"dwdeconv6",
s_filer="{{2048×32}}",
n_filer=8,
offset="(0,0,0)",
to="(dwdeconv5-east)",
height=H32,
depth=D2048,
width=W8,
caption="",
),
to_Conv(
"outconv",
s_filer="{{2048×32}}",
n_filer=1,
offset="(2,0,0)",
to="(dwdeconv6-east)",
height=H32,
depth=D2048,
width=W1,
caption="deconv4",
),
# to_connection("up2", "deconv2"),
# Output
to_Conv(
"out",
s_filer="{{2048×32}}",
n_filer=1,
offset="(2,0,0)",
to="(outconv-east)",
height=H32,
depth=D2048,
width=W1,
caption="output",
),
# to_connection("deconv2", "out"),
to_end(),
]
def main():
name = "subter_lenet_arch"
to_generate(arch, name + ".tex")
if __name__ == "__main__":
main()