This commit is contained in:
Jan Kowalczyk
2025-06-10 09:31:28 +02:00
parent 3538b15073
commit 156b6d2ac1
8 changed files with 794 additions and 580 deletions

View File

@@ -55,6 +55,15 @@ class DeepSADTrainer(BaseTrainer):
self.test_time = None
self.test_scores = None
# Add new attributes for storing indices
self.train_indices = None
self.train_file_ids = None
self.train_frame_ids = None
self.test_indices = None
self.test_file_ids = None
self.test_frame_ids = None
def train(
self, dataset: BaseADDataset, net: BaseNet, k_fold_idx: int = None
) -> BaseNet:
@@ -95,12 +104,18 @@ class DeepSADTrainer(BaseTrainer):
logger.info("Starting training...")
start_time = time.time()
net.train()
# Lists to collect all indices during training
all_indices = []
all_file_ids = []
all_frame_ids = []
for epoch in range(self.n_epochs):
epoch_loss = 0.0
n_batches = 0
epoch_start_time = time.time()
for data in train_loader:
inputs, _, semi_targets, _, _ = data
inputs, _, _, semi_targets, idx, (file_id, frame_id) = data
inputs, semi_targets = (
inputs.to(self.device),
semi_targets.to(self.device),
@@ -124,6 +139,11 @@ class DeepSADTrainer(BaseTrainer):
epoch_loss += loss.item()
n_batches += 1
# Store indices
all_indices.extend(idx.cpu().numpy().tolist())
all_file_ids.extend(file_id.cpu().numpy().tolist())
all_frame_ids.extend(frame_id.cpu().numpy().tolist())
scheduler.step()
if epoch in self.lr_milestones:
logger.info(
@@ -142,6 +162,11 @@ class DeepSADTrainer(BaseTrainer):
logger.info("Training Time: {:.3f}s".format(self.train_time))
logger.info("Finished training.")
# Store all training indices
self.train_indices = np.array(all_indices)
self.train_file_ids = np.array(all_file_ids)
self.train_frame_ids = np.array(all_frame_ids)
return net
def infer(self, dataset: BaseADDataset, net: BaseNet):
@@ -162,9 +187,14 @@ class DeepSADTrainer(BaseTrainer):
all_outputs = np.zeros((len(inference_loader.dataset), 1024), dtype=np.float32)
scores = []
net.eval()
all_indices = []
all_file_ids = []
all_frame_ids = []
with torch.no_grad():
for data in inference_loader:
inputs, idx = data
inputs, idx, (file_id, frame_id) = data
inputs = inputs.to(self.device)
idx = idx.to(self.device)
@@ -177,6 +207,11 @@ class DeepSADTrainer(BaseTrainer):
dist = torch.sum((outputs - self.c) ** 2, dim=1)
scores += dist.cpu().data.numpy().tolist()
# Store indices
all_indices.extend(idx.cpu().numpy().tolist())
all_file_ids.extend(file_id.cpu().numpy().tolist())
all_frame_ids.extend(frame_id.cpu().numpy().tolist())
n_batches += 1
self.inference_time = time.time() - start_time
@@ -185,6 +220,17 @@ class DeepSADTrainer(BaseTrainer):
logger.info("Inference Time: {:.3f}s".format(self.inference_time))
logger.info("Finished inference.")
# Store all inference indices
self.inference_indices = np.array(all_indices)
self.inference_file_ids = np.array(all_file_ids)
self.inference_frame_ids = np.array(all_frame_ids)
self.inference_index_mapping = {
"indices": self.inference_indices,
"file_ids": self.inference_file_ids,
"frame_ids": self.inference_frame_ids,
}
return np.array(scores), all_outputs
def test(self, dataset: BaseADDataset, net: BaseNet, k_fold_idx: int = None):
@@ -210,15 +256,34 @@ class DeepSADTrainer(BaseTrainer):
epoch_loss = 0.0
n_batches = 0
start_time = time.time()
idx_label_score = []
idx_label_score_exp = []
idx_label_score_manual = []
all_labels_exp = []
all_labels_manual = []
all_scores = []
all_idx = []
# Lists to collect all indices during testing
all_indices = []
all_file_ids = []
all_frame_ids = []
net.eval()
net.summary(receptive_field=True)
with torch.no_grad():
for data in test_loader:
inputs, labels, semi_targets, idx, _ = data
(
inputs,
labels_exp_based,
labels_manual_based,
semi_targets,
idx,
(file_id, frame_id),
) = data
inputs = inputs.to(self.device)
labels = labels.to(self.device)
labels_exp_based = labels_exp_based.to(self.device)
labels_manual_based = labels_manual_based.to(self.device)
semi_targets = semi_targets.to(self.device)
idx = idx.to(self.device)
@@ -232,34 +297,161 @@ class DeepSADTrainer(BaseTrainer):
loss = torch.mean(losses)
scores = dist
# Save triples of (idx, label, score) in a list
idx_label_score += list(
# Save for evaluation
idx_label_score_exp += list(
zip(
idx.cpu().data.numpy().tolist(),
labels.cpu().data.numpy().tolist(),
labels_exp_based.cpu().data.numpy().tolist(),
scores.cpu().data.numpy().tolist(),
)
)
idx_label_score_manual += list(
zip(
idx.cpu().data.numpy().tolist(),
labels_manual_based.cpu().data.numpy().tolist(),
scores.cpu().data.numpy().tolist(),
)
)
all_labels_exp.append(labels_exp_based.cpu().numpy())
all_labels_manual.append(labels_manual_based.cpu().numpy())
all_scores.append(scores.cpu().numpy())
all_idx.append(idx.cpu().numpy())
# Store indices
all_indices.extend(idx.cpu().numpy().tolist())
all_file_ids.extend(file_id.cpu().numpy().tolist())
all_frame_ids.extend(frame_id.cpu().numpy().tolist())
epoch_loss += loss.item()
n_batches += 1
self.test_time = time.time() - start_time
self.test_scores = idx_label_score
self.test_scores_exp_based = idx_label_score_exp
self.test_scores_manual_based = idx_label_score_manual
# Compute AUC
_, labels, scores = zip(*idx_label_score)
labels = np.array(labels)
scores = np.array(scores)
self.test_auc = roc_auc_score(labels, scores)
self.test_roc = roc_curve(labels, scores)
self.test_prc = precision_recall_curve(labels, scores)
self.test_ap = average_precision_score(labels, scores)
# Flatten arrays for counting and evaluation
all_labels_exp = np.concatenate(all_labels_exp)
all_labels_manual = np.concatenate(all_labels_manual)
all_scores = np.concatenate(all_scores)
all_idx = np.concatenate(all_idx)
# Count and log label stats for exp_based
n_exp_normal = np.sum(all_labels_exp == 1)
n_exp_anomaly = np.sum(all_labels_exp == -1)
n_exp_unknown = np.sum(all_labels_exp == 0)
logger.info(
f"Exp-based labels: normal(1)={n_exp_normal}, "
f"anomaly(-1)={n_exp_anomaly}, unknown(0)={n_exp_unknown}"
)
# Count and log label stats for manual_based
n_manual_normal = np.sum(all_labels_manual == 1)
n_manual_anomaly = np.sum(all_labels_manual == -1)
n_manual_unknown = np.sum(all_labels_manual == 0)
logger.info(
f"Manual-based labels: normal(1)={n_manual_normal}, "
f"anomaly(-1)={n_manual_anomaly}, unknown(0)={n_manual_unknown}"
)
# --- Evaluation for exp_based (only labeled samples) ---
idxs_exp, labels_exp, scores_exp = zip(*idx_label_score_exp)
labels_exp = np.array(labels_exp)
scores_exp = np.array(scores_exp)
# Filter out unknown labels and convert to binary (1: anomaly, 0: normal) for ROC
valid_mask_exp = labels_exp != 0
if np.any(valid_mask_exp):
# Convert to binary labels for ROC (-1 → 1, 1 → 0)
labels_exp_binary = (labels_exp[valid_mask_exp] == -1).astype(int)
scores_exp_valid = scores_exp[valid_mask_exp]
self.test_auc_exp_based = roc_auc_score(labels_exp_binary, scores_exp_valid)
self.test_roc_exp_based = roc_curve(labels_exp_binary, scores_exp_valid)
self.test_prc_exp_based = precision_recall_curve(
labels_exp_binary, scores_exp_valid
)
self.test_ap_exp_based = average_precision_score(
labels_exp_binary, scores_exp_valid
)
logger.info("Test Loss: {:.6f}".format(epoch_loss / n_batches))
logger.info(
"Test AUC (exp_based): {:.2f}%".format(100.0 * self.test_auc_exp_based)
)
else:
logger.info("Test AUC (exp_based): N/A (no labeled samples)")
self.test_auc_exp_based = None
self.test_roc_exp_based = None
self.test_prc_exp_based = None
self.test_ap_exp_based = None
# Log results
logger.info("Test Loss: {:.6f}".format(epoch_loss / n_batches))
logger.info("Test AUC: {:.2f}%".format(100.0 * self.test_auc))
logger.info("Test Time: {:.3f}s".format(self.test_time))
# --- Evaluation for manual_based (only labeled samples) ---
idxs_manual, labels_manual, scores_manual = zip(*idx_label_score_manual)
labels_manual = np.array(labels_manual)
scores_manual = np.array(scores_manual)
# Filter out unknown labels and convert to binary for ROC
valid_mask_manual = labels_manual != 0
if np.any(valid_mask_manual):
# Convert to binary labels for ROC (-1 → 1, 1 → 0)
labels_manual_binary = (labels_manual[valid_mask_manual] == -1).astype(int)
scores_manual_valid = scores_manual[valid_mask_manual]
self.test_auc_manual_based = roc_auc_score(
labels_manual_binary, scores_manual_valid
)
self.test_roc_manual_based = roc_curve(
labels_manual_binary, scores_manual_valid
)
self.test_prc_manual_based = precision_recall_curve(
labels_manual_binary, scores_manual_valid
)
self.test_ap_manual_based = average_precision_score(
labels_manual_binary, scores_manual_valid
)
logger.info(
"Test AUC (manual_based): {:.2f}%".format(
100.0 * self.test_auc_manual_based
)
)
else:
self.test_auc_manual_based = None
self.test_roc_manual_based = None
self.test_prc_manual_based = None
self.test_ap_manual_based = None
logger.info("Test AUC (manual_based): N/A (no labeled samples)")
# Store all test indices
self.test_indices = np.array(all_indices)
self.test_file_ids = np.array(all_file_ids)
self.test_frame_ids = np.array(all_frame_ids)
# Add logging for indices
logger.info(f"Number of test samples: {len(self.test_indices)}")
logger.info(f"Number of unique files: {len(np.unique(self.test_file_ids))}")
# Create a mapping of indices to their file/frame information
self.test_index_mapping = {
"indices": self.test_indices,
"file_ids": self.test_file_ids,
"frame_ids": self.test_frame_ids,
"exp_based": {
"indices": np.array(idxs_exp),
"labels": np.array(labels_exp),
"scores": np.array(scores_exp),
"valid_mask": valid_mask_exp,
},
"manual_based": {
"indices": np.array(idxs_manual),
"labels": np.array(labels_manual),
"scores": np.array(scores_manual),
"valid_mask": valid_mask_manual,
},
}
logger.info("Finished testing.")
def init_center_c(self, train_loader: DataLoader, net: BaseNet, eps=0.1):
@@ -272,7 +464,7 @@ class DeepSADTrainer(BaseTrainer):
with torch.no_grad():
for data in train_loader:
# get the inputs of the batch
inputs, _, _, _, _ = data
inputs, _, _, _, _, _ = data
inputs = inputs.to(self.device)
outputs = net(inputs)
n_samples += outputs.shape[0]