This commit is contained in:
Jan Kowalczyk
2025-06-10 09:31:28 +02:00
parent 3538b15073
commit 156b6d2ac1
8 changed files with 794 additions and 580 deletions

View File

@@ -1,6 +1,7 @@
import json
import pickle
import numpy as np
import torch
from base.base_dataset import BaseADDataset
@@ -43,10 +44,47 @@ class DeepSAD(object):
self.ae_optimizer_name = None
self.results = {
"train_time": None,
"test_auc": None,
"test_time": None,
"test_scores": None,
"train": {
"time": None,
"indices": None,
"file_ids": None,
"frame_ids": None,
"file_names": None, # mapping of file_ids to file names
},
"test": {
"time": None,
"indices": None,
"file_ids": None,
"frame_ids": None,
"file_names": None, # mapping of file_ids to file names
"exp_based": {
"auc": None,
"roc": None,
"prc": None,
"ap": None,
"scores": None,
"indices": None,
"labels": None,
"valid_mask": None,
},
"manual_based": {
"auc": None,
"roc": None,
"prc": None,
"ap": None,
"scores": None,
"indices": None,
"labels": None,
"valid_mask": None,
},
},
"inference": {
"time": None,
"indices": None,
"file_ids": None,
"frame_ids": None,
"file_names": None, # mapping of file_ids to file names
},
}
self.ae_results = {"train_time": None, "test_auc": None, "test_time": None}
@@ -86,8 +124,17 @@ class DeepSAD(object):
)
# Get the model
self.net = self.trainer.train(dataset, self.net, k_fold_idx=k_fold_idx)
self.results["train_time"] = self.trainer.train_time
self.c = self.trainer.c.cpu().data.numpy().tolist() # get as list
# Store training results including indices
self.results["train"]["time"] = self.trainer.train_time
self.results["train"]["indices"] = self.trainer.train_indices
self.results["train"]["file_ids"] = self.trainer.train_file_ids
self.results["train"]["frame_ids"] = self.trainer.train_frame_ids
# Get file names mapping for training data
self.results["train"]["file_names"] = {
file_id: dataset.get_file_name_from_idx(file_id)
for file_id in np.unique(self.trainer.train_file_ids)
}
def inference(
self, dataset: BaseADDataset, device: str = "cuda", n_jobs_dataloader: int = 0
@@ -99,7 +146,21 @@ class DeepSAD(object):
self.c, self.eta, device=device, n_jobs_dataloader=n_jobs_dataloader
)
return self.trainer.infer(dataset, self.net)
scores, outputs = self.trainer.infer(dataset, self.net)
# Store inference indices and mappings
self.results["inference"]["time"] = self.trainer.inference_time
self.results["inference"]["indices"] = self.trainer.inference_indices
self.results["inference"]["file_ids"] = self.trainer.inference_file_ids
self.results["inference"]["frame_ids"] = self.trainer.inference_frame_ids
# Get file names mapping for inference data
self.results["inference"]["file_names"] = {
file_id: dataset.get_file_name_from_idx(file_id)
for file_id in np.unique(self.trainer.inference_file_ids)
}
return scores, outputs
def test(
self,
@@ -117,13 +178,51 @@ class DeepSAD(object):
self.trainer.test(dataset, self.net, k_fold_idx=k_fold_idx)
# Get results
self.results["test_auc"] = self.trainer.test_auc
self.results["test_roc"] = self.trainer.test_roc
self.results["test_prc"] = self.trainer.test_prc
self.results["test_ap"] = self.trainer.test_ap
self.results["test_time"] = self.trainer.test_time
self.results["test_scores"] = self.trainer.test_scores
# Store all test indices and mappings
self.results["test"]["time"] = self.trainer.test_time
self.results["test"]["indices"] = self.trainer.test_indices
self.results["test"]["file_ids"] = self.trainer.test_file_ids
self.results["test"]["frame_ids"] = self.trainer.test_frame_ids
# Get file names mapping for test data
self.results["test"]["file_names"] = {
file_id: dataset.get_file_name_from_idx(file_id)
for file_id in np.unique(self.trainer.test_file_ids)
}
# Store experiment-based results
self.results["test"]["exp_based"]["auc"] = self.trainer.test_auc_exp_based
self.results["test"]["exp_based"]["roc"] = self.trainer.test_roc_exp_based
self.results["test"]["exp_based"]["prc"] = self.trainer.test_prc_exp_based
self.results["test"]["exp_based"]["ap"] = self.trainer.test_ap_exp_based
self.results["test"]["exp_based"]["scores"] = self.trainer.test_scores_exp_based
self.results["test"]["exp_based"]["indices"] = self.trainer.test_index_mapping[
"exp_based"
]["indices"]
self.results["test"]["exp_based"]["labels"] = self.trainer.test_index_mapping[
"exp_based"
]["labels"]
self.results["test"]["exp_based"]["valid_mask"] = (
self.trainer.test_index_mapping["exp_based"]["valid_mask"]
)
# Store manual-based results
self.results["test"]["manual_based"]["auc"] = self.trainer.test_auc_manual_based
self.results["test"]["manual_based"]["roc"] = self.trainer.test_roc_manual_based
self.results["test"]["manual_based"]["prc"] = self.trainer.test_prc_manual_based
self.results["test"]["manual_based"]["ap"] = self.trainer.test_ap_manual_based
self.results["test"]["manual_based"]["scores"] = (
self.trainer.test_scores_manual_based
)
self.results["test"]["manual_based"]["indices"] = (
self.trainer.test_index_mapping["manual_based"]["indices"]
)
self.results["test"]["manual_based"]["labels"] = (
self.trainer.test_index_mapping["manual_based"]["labels"]
)
self.results["test"]["manual_based"]["valid_mask"] = (
self.trainer.test_index_mapping["manual_based"]["valid_mask"]
)
def pretrain(
self,

View File

@@ -63,6 +63,8 @@ class TorchvisionDataset(BaseADDataset):
shuffle_test=False,
num_workers: int = 0,
) -> (DataLoader, DataLoader):
if self.k_fold_number is None:
raise ValueError("k_fold_number must be set to a positive integer.")
if self.fold_indices is None:
# Define the K-fold Cross Validator
kfold = KFold(n_splits=self.k_fold_number, shuffle=False)

View File

@@ -51,9 +51,16 @@ class IsoForest(object):
self.results = {
"train_time": None,
"test_time": None,
"test_auc": None,
"test_roc": None,
"test_scores": None,
"test_auc_exp_based": None,
"test_roc_exp_based": None,
"test_prc_exp_based": None,
"test_ap_exp_based": None,
"test_scores_exp_based": None,
"test_auc_manual_based": None,
"test_roc_manual_based": None,
"test_prc_manual_based": None,
"test_ap_manual_based": None,
"test_scores_manual_based": None,
}
def train(
@@ -89,7 +96,7 @@ class IsoForest(object):
# Get data from loader
X = ()
for data in train_loader:
inputs, _, _, _, _ = data
inputs, _, _, _, _, _ = data
inputs = inputs.to(device)
if self.hybrid:
inputs = self.ae_net.encoder(
@@ -133,28 +140,50 @@ class IsoForest(object):
)
# Get data from loader
idx_label_score = []
idx_label_score_exp = []
idx_label_score_manual = []
X = ()
idxs = []
labels = []
labels_exp = []
labels_manual = []
for data in test_loader:
inputs, label_batch, _, idx, _ = data
inputs, label_batch, idx = (
inputs, label_exp, label_manual, _, idx, _ = data
inputs, label_exp, label_manual, idx = (
inputs.to(device),
label_batch.to(device),
label_exp.to(device),
label_manual.to(device),
idx.to(device),
)
if self.hybrid:
inputs = self.ae_net.encoder(
inputs
) # in hybrid approach, take code representation of AE as features
X_batch = inputs.view(
inputs.size(0), -1
) # X_batch.shape = (batch_size, n_channels * height * width)
inputs = self.ae_net.encoder(inputs)
X_batch = inputs.view(inputs.size(0), -1)
X += (X_batch.cpu().data.numpy(),)
idxs += idx.cpu().data.numpy().astype(np.int64).tolist()
labels += label_batch.cpu().data.numpy().astype(np.int64).tolist()
labels_exp += label_exp.cpu().data.numpy().astype(np.int64).tolist()
labels_manual += label_manual.cpu().data.numpy().astype(np.int64).tolist()
X = np.concatenate(X)
labels_exp = np.array(labels_exp)
labels_manual = np.array(labels_manual)
# Count and log label stats for exp_based
n_exp_normal = np.sum(labels_exp == 1)
n_exp_anomaly = np.sum(labels_exp == -1)
n_exp_unknown = np.sum(labels_exp == 0)
logger.info(
f"Exp-based labels: normal(1)={n_exp_normal}, "
f"anomaly(-1)={n_exp_anomaly}, unknown(0)={n_exp_unknown}"
)
# Count and log label stats for manual_based
n_manual_normal = np.sum(labels_manual == 1)
n_manual_anomaly = np.sum(labels_manual == -1)
n_manual_unknown = np.sum(labels_manual == 0)
logger.info(
f"Manual-based labels: normal(1)={n_manual_normal}, "
f"anomaly(-1)={n_manual_anomaly}, unknown(0)={n_manual_unknown}"
)
# Testing
logger.info("Starting testing...")
@@ -163,21 +192,72 @@ class IsoForest(object):
self.results["test_time"] = time.time() - start_time
scores = scores.flatten()
# Save triples of (idx, label, score) in a list
idx_label_score += list(zip(idxs, labels, scores.tolist()))
self.results["test_scores"] = idx_label_score
# Save triples of (idx, label, score) in a list for both label types
idx_label_score_exp += list(zip(idxs, labels_exp.tolist(), scores.tolist()))
idx_label_score_manual += list(
zip(idxs, labels_manual.tolist(), scores.tolist())
)
# Compute AUC
_, labels, scores = zip(*idx_label_score)
labels = np.array(labels)
scores = np.array(scores)
self.results["test_auc"] = roc_auc_score(labels, scores)
self.results["test_roc"] = roc_curve(labels, scores)
self.results["test_prc"] = precision_recall_curve(labels, scores)
self.results["test_ap"] = average_precision_score(labels, scores)
self.results["test_scores_exp_based"] = idx_label_score_exp
self.results["test_scores_manual_based"] = idx_label_score_manual
# --- Evaluation for exp_based (only labeled samples) ---
# Filter out unknown labels and convert to binary (1: anomaly, 0: normal) for ROC
valid_mask_exp = labels_exp != 0
if np.any(valid_mask_exp):
# Convert to binary labels for ROC (-1 → 1, 1 → 0)
labels_exp_binary = (labels_exp[valid_mask_exp] == -1).astype(int)
scores_exp_valid = scores[valid_mask_exp]
self.results["test_auc_exp_based"] = roc_auc_score(
labels_exp_binary, scores_exp_valid
)
self.results["test_roc_exp_based"] = roc_curve(
labels_exp_binary, scores_exp_valid
)
self.results["test_prc_exp_based"] = precision_recall_curve(
labels_exp_binary, scores_exp_valid
)
self.results["test_ap_exp_based"] = average_precision_score(
labels_exp_binary, scores_exp_valid
)
logger.info(
"Test AUC (exp_based): {:.2f}%".format(
100.0 * self.results["test_auc_exp_based"]
)
)
else:
logger.info("Test AUC (exp_based): N/A (no labeled samples)")
# --- Evaluation for manual_based (only labeled samples) ---
valid_mask_manual = labels_manual != 0
if np.any(valid_mask_manual):
# Convert to binary labels for ROC (-1 → 1, 1 → 0)
labels_manual_binary = (labels_manual[valid_mask_manual] == -1).astype(int)
scores_manual_valid = scores[valid_mask_manual]
self.results["test_auc_manual_based"] = roc_auc_score(
labels_manual_binary, scores_manual_valid
)
self.results["test_roc_manual_based"] = roc_curve(
labels_manual_binary, scores_manual_valid
)
self.results["test_prc_manual_based"] = precision_recall_curve(
labels_manual_binary, scores_manual_valid
)
self.results["test_ap_manual_based"] = average_precision_score(
labels_manual_binary, scores_manual_valid
)
logger.info(
"Test AUC (manual_based): {:.2f}%".format(
100.0 * self.results["test_auc_manual_based"]
)
)
else:
logger.info("Test AUC (manual_based): N/A (no labeled samples)")
# Log results
logger.info("Test AUC: {:.2f}%".format(100.0 * self.results["test_auc"]))
logger.info("Test Time: {:.3f}s".format(self.results["test_time"]))
logger.info("Finished testing.")

View File

@@ -18,7 +18,7 @@ def load_dataset(
ratio_pollution: float = 0.0,
random_state=None,
inference: bool = False,
k_fold: bool = False,
k_fold_num: int = None,
num_known_normal: int = 0,
num_known_outlier: int = 0,
):
@@ -45,11 +45,8 @@ def load_dataset(
if dataset_name == "subter":
dataset = SubTer_Dataset(
root=data_path,
ratio_known_normal=ratio_known_normal,
ratio_known_outlier=ratio_known_outlier,
ratio_pollution=ratio_pollution,
inference=inference,
k_fold=k_fold,
k_fold_num=k_fold_num,
num_known_normal=num_known_normal,
num_known_outlier=num_known_outlier,
)

View File

@@ -1,6 +1,5 @@
import json
import logging
import random
from pathlib import Path
from typing import Callable, Optional
@@ -8,596 +7,350 @@ import numpy as np
import torch
import torchvision.transforms as transforms
from PIL import Image
from torch.utils.data import Subset
from torch.utils.data.dataset import ConcatDataset
from torchvision.datasets import VisionDataset
from base.torchvision_dataset import TorchvisionDataset
from .preprocessing import create_semisupervised_setting
class SubTer_Dataset(TorchvisionDataset):
"""
Wrapper for SubTerTraining and SubTerInference, sets up train/test/inference/data_set as needed.
"""
def __init__(
self,
root: str,
ratio_known_normal: float = 0.0,
ratio_known_outlier: float = 0.0,
ratio_pollution: float = 0.0,
inference: bool = False,
k_fold: bool = False,
num_known_normal: int = 0,
num_known_outlier: int = 0,
only_use_given_semi_targets_for_evaluation: bool = True,
k_fold_num: int = None,
inference: bool = False,
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
seed: int = 0,
split: float = 0.7,
):
super().__init__(root)
if Path(root).is_dir():
with open(Path(root) / "semi_targets.json", "r") as f:
data = json.load(f)
semi_targets_given = {
super().__init__(root, k_fold_number=k_fold_num)
self.inference_set = None
self.train_set = None
self.test_set = None
self.data_set = None
if inference:
self.inference_set = SubTerInference(
root=root,
transform=transform,
)
return
# Always require the manual label file
manual_json_path = Path(root) / "manually_labeled_anomaly_frames.json"
if not manual_json_path.exists():
raise FileNotFoundError(f"Required file not found: {manual_json_path}")
# For k_fold, data_set is the full dataset, train/test are None
if k_fold_num is not None:
self.data_set = SubTerTraining(
root=root,
num_known_normal=num_known_normal,
num_known_outlier=num_known_outlier,
transform=transform,
target_transform=target_transform,
seed=seed,
split=1.0, # use all data for k-fold
)
self.train_set = None
self.test_set = None
else:
# Standard split
self.train_set = SubTerTraining(
root=root,
num_known_normal=num_known_normal,
num_known_outlier=num_known_outlier,
transform=transform,
target_transform=target_transform,
seed=seed,
split=split,
train=True,
)
self.test_set = SubTerTraining(
root=root,
num_known_normal=num_known_normal,
num_known_outlier=num_known_outlier,
transform=transform,
target_transform=target_transform,
seed=seed,
split=split,
train=False,
)
self.data_set = None # not used unless k_fold
def get_file_name_from_idx(self, idx: int) -> Optional[str]:
"""
Get filename for a file_id by delegating to the appropriate dataset.
Args:
idx: The file index to look up
Returns:
str: The filename corresponding to the index, or None if not found
"""
# For non-inference, use any available dataset (they all have the same files)
if self.data_set is not None:
return self.data_set.get_file_name_from_idx(idx)
if self.train_set is not None:
return self.train_set.get_file_name_from_idx(idx)
if self.test_set is not None:
return self.test_set.get_file_name_from_idx(idx)
if self.inference_set is not None:
return self.inference_set.get_file_name_from_idx(idx)
return None
class SubTerTraining(VisionDataset):
"""
Loads all data, builds targets, and supports train/test split.
"""
def __init__(
self,
root: str,
num_known_normal: int = 0,
num_known_outlier: int = 0,
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
seed: int = 0,
split: float = 0.7,
train: bool = True,
):
super().__init__(root, transform=transform, target_transform=target_transform)
logger = logging.getLogger()
manual_json_path = Path(root) / "manually_labeled_anomaly_frames.json"
with open(manual_json_path, "r") as f:
manual_data = json.load(f)
manual_anomaly_ranges = {
item["filename"]: (
item["semi_target_begin_frame"],
item["semi_target_end_frame"],
)
for item in data["files"]
for item in manual_data["files"]
}
# Define normal and outlier classes
self.n_classes = 2 # 0: normal, 1: outlier
self.normal_classes = tuple([0])
self.outlier_classes = tuple([1])
self.inference_set = None
# MNIST preprocessing: feature scaling to [0, 1]
# FIXME understand mnist feature scaling and check if it or other preprocessing is necessary for elpv
transform = transforms.ToTensor()
target_transform = transforms.Lambda(lambda x: int(x in self.outlier_classes))
if inference:
self.inference_set = SubTerInference(
root=self.root,
transform=transform,
)
else:
if k_fold:
# Get train set
data_set = SubTerTraining(
root=self.root,
transform=transform,
target_transform=target_transform,
train=True,
split=1,
semi_targets_given=semi_targets_given,
)
np.random.seed(0)
semi_targets = data_set.semi_targets.numpy()
# Find indices where semi_targets is -1 (abnormal) or 1 (normal)
normal_indices = np.where(semi_targets == 1)[0]
abnormal_indices = np.where(semi_targets == -1)[0]
# Randomly select the specified number of indices to keep for each category
if len(normal_indices) > num_known_normal:
keep_normal_indices = np.random.choice(
normal_indices, size=num_known_normal, replace=False
)
else:
keep_normal_indices = (
normal_indices # Keep all if there are fewer than required
)
if len(abnormal_indices) > num_known_outlier:
keep_abnormal_indices = np.random.choice(
abnormal_indices, size=num_known_outlier, replace=False
)
else:
keep_abnormal_indices = (
abnormal_indices # Keep all if there are fewer than required
)
# Set all values to 0, then restore only the selected -1 and 1 values
semi_targets[(semi_targets == 1) | (semi_targets == -1)] = 0
semi_targets[keep_normal_indices] = 1
semi_targets[keep_abnormal_indices] = -1
data_set.semi_targets = torch.tensor(semi_targets, dtype=torch.int8)
self.data_set = data_set
# # Create semi-supervised setting
# idx, _, semi_targets = create_semisupervised_setting(
# data_set.targets.cpu().data.numpy(),
# self.normal_classes,
# self.outlier_classes,
# self.outlier_classes,
# ratio_known_normal,
# ratio_known_outlier,
# ratio_pollution,
# )
# data_set.semi_targets[idx] = torch.tensor(
# np.array(semi_targets, dtype=np.int8)
# ) # set respective semi-supervised labels
# # Subset data_set to semi-supervised setup
# self.data_set = Subset(data_set, idx)
else:
# Get train set
if only_use_given_semi_targets_for_evaluation:
pass
train_set = SubTerTrainingSelective(
root=self.root,
transform=transform,
target_transform=target_transform,
train=True,
num_known_outlier=num_known_outlier,
semi_targets_given=semi_targets_given,
)
np.random.seed(0)
semi_targets = train_set.semi_targets.numpy()
# Find indices where semi_targets is -1 (abnormal) or 1 (normal)
normal_indices = np.where(semi_targets == 1)[0]
# Randomly select the specified number of indices to keep for each category
if len(normal_indices) > num_known_normal:
keep_normal_indices = np.random.choice(
normal_indices, size=num_known_normal, replace=False
)
else:
keep_normal_indices = (
normal_indices # Keep all if there are fewer than required
)
# Set all values to 0, then restore only the selected -1 and 1 values
semi_targets[semi_targets == 1] = 0
semi_targets[keep_normal_indices] = 1
train_set.semi_targets = torch.tensor(
semi_targets, dtype=torch.int8
)
self.train_set = train_set
self.test_set = SubTerTrainingSelective(
root=self.root,
transform=transform,
target_transform=target_transform,
num_known_outlier=num_known_outlier,
train=False,
semi_targets_given=semi_targets_given,
)
else:
train_set = SubTerTraining(
root=self.root,
transform=transform,
target_transform=target_transform,
train=True,
semi_targets_given=semi_targets_given,
)
# Create semi-supervised setting
idx, _, semi_targets = create_semisupervised_setting(
train_set.targets.cpu().data.numpy(),
self.normal_classes,
self.outlier_classes,
self.outlier_classes,
ratio_known_normal,
ratio_known_outlier,
ratio_pollution,
)
train_set.semi_targets[idx] = torch.tensor(
np.array(semi_targets, dtype=np.int8)
) # set respective semi-supervised labels
# Subset train_set to semi-supervised setup
self.train_set = Subset(train_set, idx)
# Get test set
self.test_set = SubTerTraining(
root=self.root,
train=False,
transform=transform,
target_transform=target_transform,
semi_targets_given=semi_targets_given,
)
class SubTerTraining(VisionDataset):
def __init__(
self,
root: str,
transforms: Optional[Callable] = None,
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
train=False,
split=0.7,
seed=0,
semi_targets_given=None,
only_use_given_semi_targets_for_evaluation=False,
):
super(SubTerTraining, self).__init__(
root, transforms, transform, target_transform
)
experiments_data = []
experiments_targets = []
experiments_semi_targets = []
# validation_files = []
experiment_files = []
experiment_frame_ids = []
experiment_file_ids = []
all_data = []
all_file_ids = []
all_frame_ids = []
all_filenames = []
test_target_experiment_based = []
test_target_manually_set = []
train_semi_targets = []
file_names = {}
file_idx = 0
for file_idx, experiment_file in enumerate(sorted(Path(root).iterdir())):
# if experiment_file.is_dir() and experiment_file.name == "validation":
# for validation_file in experiment_file.iterdir():
# if validation_file.suffix != ".npy":
# continue
# validation_files.append(experiment_file)
for experiment_file in sorted(Path(root).iterdir()):
if experiment_file.suffix != ".npy":
continue
file_names[file_idx] = experiment_file.name
experiment_files.append(experiment_file)
experiment_data = np.load(experiment_file)
experiment_targets = (
np.ones(experiment_data.shape[0], dtype=np.int8)
if "smoke" in experiment_file.name
else np.zeros(experiment_data.shape[0], dtype=np.int8)
n_frames = experiment_data.shape[0]
is_smoke = "smoke" in experiment_file.name
if is_smoke:
if experiment_file.name not in manual_anomaly_ranges:
raise ValueError(
f"Experiment file {experiment_file.name} is marked as smoke but has no manual anomaly ranges."
)
# experiment_data = np.lib.format.open_memmap(experiment_file, mode='r+')
experiment_semi_targets = np.zeros(experiment_data.shape[0], dtype=np.int8)
if "smoke" not in experiment_file.name:
experiment_semi_targets = np.ones(
experiment_data.shape[0], dtype=np.int8
manual_anomaly_start_frame, manual_anomaly_end_frame = (
manual_anomaly_ranges[experiment_file.name]
)
# Experiment-based: 1 (normal), -1 (anomaly)
exp_based_targets = (
np.full(n_frames, -1, dtype=np.int8) # anomaly
if is_smoke
else np.full(n_frames, 1, dtype=np.int8) # normal
)
# Manually set: 1 (normal), -1 (anomaly), 0 (unknown/NaN)
if not is_smoke:
manual_targets = np.full(n_frames, 1, dtype=np.int8) # normal
else:
if semi_targets_given:
if experiment_file.name in semi_targets_given:
semi_target_begin_frame, semi_target_end_frame = (
semi_targets_given[experiment_file.name]
)
experiment_semi_targets[
semi_target_begin_frame:semi_target_end_frame
] = -1
else:
experiment_semi_targets = (
np.ones(experiment_data.shape[0], dtype=np.int8) * -1
)
experiment_file_ids.append(
np.full(experiment_data.shape[0], file_idx, dtype=np.int8)
)
experiment_frame_ids.append(
np.arange(experiment_data.shape[0], dtype=np.int32)
)
experiments_data.append(experiment_data)
experiments_targets.append(experiment_targets)
experiments_semi_targets.append(experiment_semi_targets)
# filtered_validation_files = []
# for validation_file in validation_files:
# validation_file_name = validation_file.name
# file_exists_in_experiments = any(
# experiment_file.name == validation_file_name
# for experiment_file in experiment_files
# )
# if not file_exists_in_experiments:
# filtered_validation_files.append(validation_file)
# validation_files = filtered_validation_files
logger = logging.getLogger()
manual_targets = np.zeros(n_frames, dtype=np.int8) # unknown
manual_targets[
manual_anomaly_start_frame:manual_anomaly_end_frame
] = -1 # anomaly
# log how many manual anomaly frames were set to each value
logger.info(
f"Train/Test experiments: {[experiment_file.name for experiment_file in experiment_files]}"
f"Experiment {experiment_file.name}: "
f"Manual targets - normal(1): {np.sum(manual_targets == 1)}, "
f"anomaly(-1): {np.sum(manual_targets == -1)}, "
f"unknown(0): {np.sum(manual_targets == 0)}"
)
# logger.info(
# f"Validation experiments: {[validation_file.name for validation_file in validation_files]}"
# )
lidar_projections = np.concatenate(experiments_data)
smoke_presence = np.concatenate(experiments_targets)
semi_targets = np.concatenate(experiments_semi_targets)
file_ids = np.concatenate(experiment_file_ids)
frame_ids = np.concatenate(experiment_frame_ids)
# Semi-supervised targets: 1 (known normal), -1 (known anomaly), 0 (unknown)
if not is_smoke:
semi_targets = np.ones(n_frames, dtype=np.int8) # normal
else:
semi_targets = np.zeros(n_frames, dtype=np.int8) # unknown
semi_targets[
manual_anomaly_start_frame:manual_anomaly_end_frame
] = -1 # anomaly
all_data.append(experiment_data)
all_file_ids.append(np.full(n_frames, file_idx, dtype=np.int32))
all_frame_ids.append(np.arange(n_frames, dtype=np.int32))
all_filenames.extend([experiment_file.name] * n_frames)
test_target_experiment_based.append(exp_based_targets)
test_target_manually_set.append(manual_targets)
train_semi_targets.append(semi_targets)
file_idx += 1
# Flatten everything
data = np.nan_to_num(np.concatenate(all_data))
file_ids = np.concatenate(all_file_ids)
frame_ids = np.concatenate(all_frame_ids)
filenames = all_filenames
self.file_names = file_names
test_target_experiment_based = np.concatenate(test_target_experiment_based)
test_target_manually_set = np.concatenate(test_target_manually_set)
semi_targets_np = np.concatenate(train_semi_targets)
# Limit the number of known normal/anomaly samples for training
np.random.seed(seed)
normal_indices = np.where(semi_targets_np == 1)[0]
anomaly_indices = np.where(semi_targets_np == -1)[0]
shuffled_indices = np.random.permutation(lidar_projections.shape[0])
shuffled_lidar_projections = lidar_projections[shuffled_indices]
shuffled_smoke_presence = smoke_presence[shuffled_indices]
shuffled_file_ids = file_ids[shuffled_indices]
shuffled_frame_ids = frame_ids[shuffled_indices]
shuffled_semis = semi_targets[shuffled_indices]
if num_known_normal > 0 and len(normal_indices) > num_known_normal:
keep_normal = np.random.choice(
normal_indices, size=num_known_normal, replace=False
)
else:
keep_normal = normal_indices
split_idx = int(split * shuffled_lidar_projections.shape[0])
if num_known_outlier > 0 and len(anomaly_indices) > num_known_outlier:
keep_anomaly = np.random.choice(
anomaly_indices, size=num_known_outlier, replace=False
)
else:
keep_anomaly = anomaly_indices
semi_targets_np[(semi_targets_np == 1) | (semi_targets_np == -1)] = 0
semi_targets_np[keep_normal] = 1
semi_targets_np[keep_anomaly] = -1
# Shuffle and split
indices = np.arange(len(data))
np.random.seed(seed)
np.random.shuffle(indices)
split_idx = int(split * len(data))
if train:
self.data = shuffled_lidar_projections[:split_idx]
self.targets = shuffled_smoke_presence[:split_idx]
semi_targets = shuffled_semis[:split_idx]
self.shuffled_file_ids = shuffled_file_ids[:split_idx]
self.shuffled_frame_ids = shuffled_frame_ids[:split_idx]
use_idx = indices[:split_idx]
else:
self.data = shuffled_lidar_projections[split_idx:]
self.targets = shuffled_smoke_presence[split_idx:]
semi_targets = shuffled_semis[split_idx:]
self.shuffled_file_ids = shuffled_file_ids[split_idx:]
self.shuffled_frame_ids = shuffled_frame_ids[split_idx:]
use_idx = indices[split_idx:]
self.data = np.nan_to_num(self.data)
self.data = torch.tensor(data[use_idx])
self.file_ids = file_ids[use_idx]
self.frame_ids = frame_ids[use_idx]
self.filenames = [filenames[i] for i in use_idx]
self.test_target_experiment_based = torch.tensor(
test_target_experiment_based[use_idx], dtype=torch.int8
)
self.test_target_manually_set = torch.tensor(
test_target_manually_set[use_idx], dtype=torch.int8
)
self.data = torch.tensor(self.data)
self.targets = torch.tensor(self.targets, dtype=torch.int8)
# log how many of the test_target_manually_set are in each category
logger.info(
f"Test targets - normal(1): {np.sum(self.test_target_manually_set.numpy() == 1)}, "
f"anomaly(-1): {np.sum(self.test_target_manually_set.numpy() == -1)}, "
f"unknown(0): {np.sum(self.test_target_manually_set.numpy() == 0)}"
)
if semi_targets_given is not None:
self.semi_targets = torch.tensor(semi_targets, dtype=torch.int8)
else:
self.semi_targets = torch.zeros_like(self.targets, dtype=torch.int8)
self.train_semi_targets = torch.tensor(
semi_targets_np[use_idx], dtype=torch.int8
)
self.transform = transform if transform else transforms.ToTensor()
self.target_transform = target_transform
def __len__(self):
return len(self.data)
def __getitem__(self, index):
"""Override the original method of the MNIST class.
Args:
index (int): Index
img = self.data[index]
target_experiment_based = int(self.test_target_experiment_based[index])
target_manually_set = int(self.test_target_manually_set[index])
semi_target = int(self.train_semi_targets[index])
file_id = int(self.file_ids[index])
frame_id = int(self.frame_ids[index])
Returns:
tuple: (image, target, semi_target, index)
"""
img, target, semi_target, file_id, frame_id = (
self.data[index],
int(self.targets[index]),
int(self.semi_targets[index]),
int(self.shuffled_file_ids[index]),
int(self.shuffled_frame_ids[index]),
)
# doing this so that it is consistent with all other datasets
# to return a PIL Image
img = Image.fromarray(img.numpy(), mode="F")
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
target_experiment_based = self.target_transform(target_experiment_based)
target_manually_set = self.target_transform(target_manually_set)
semi_target = self.target_transform(semi_target)
return img, target, semi_target, index, (file_id, frame_id)
return (
img,
target_experiment_based,
target_manually_set,
semi_target,
index,
(file_id, frame_id),
)
def get_file_name_from_idx(self, idx: int):
return self.file_names[idx]
return self.file_names.get(idx, None)
class SubTerInference(VisionDataset):
"""
Loads a single experiment file for inference.
"""
def __init__(
self,
root: str,
transforms: Optional[Callable] = None,
transform: Optional[Callable] = None,
):
super(SubTerInference, self).__init__(root, transforms, transform)
super().__init__(root, transform=transform)
logger = logging.getLogger()
self.experiment_file_path = Path(root)
if not self.experiment_file_path.is_file():
experiment_file = Path(root)
if not experiment_file.is_file():
logger.error(
"For inference the data path has to be a single experiment file!"
)
raise Exception("Inference data is not a loadable file!")
self.data = np.load(self.experiment_file_path)
self.data = np.load(experiment_file)
self.data = np.nan_to_num(self.data)
self.data = torch.tensor(self.data)
self.filenames = [experiment_file.name] * self.data.shape[0]
self.file_ids = np.zeros(self.data.shape[0], dtype=np.int32)
self.frame_ids = np.arange(self.data.shape[0], dtype=np.int32)
self.file_names = {0: experiment_file.name}
def __len__(self):
return len(self.data)
def __getitem__(self, index):
"""Override the original method of the MNIST class.
Args:
index (int): Index
Returns:
tuple: (image, index)
"""
img = self.data[index]
file_id = int(self.file_ids[index])
frame_id = int(self.frame_ids[index])
# doing this so that it is consistent with all other datasets
# to return a PIL Image
img = Image.fromarray(img.numpy(), mode="F")
if self.transform is not None:
img = self.transform(img)
return img, index
class SubTerTrainingSelective(VisionDataset):
def __init__(
self,
root: str,
transforms: Optional[Callable] = None,
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
train=False,
num_known_outlier=0,
seed=0,
semi_targets_given=None,
ratio_test_normal_to_anomalous=3,
):
super(SubTerTrainingSelective, self).__init__(
root, transforms, transform, target_transform
)
logger = logging.getLogger()
if semi_targets_given is None:
raise ValueError(
"semi_targets_given must be provided for selective training"
)
experiments_data = []
experiments_targets = []
experiments_semi_targets = []
# validation_files = []
experiment_files = []
experiment_frame_ids = []
experiment_file_ids = []
file_names = {}
for file_idx, experiment_file in enumerate(sorted(Path(root).iterdir())):
if experiment_file.suffix != ".npy":
continue
file_names[file_idx] = experiment_file.name
experiment_files.append(experiment_file)
experiment_data = np.load(experiment_file)
experiment_targets = (
np.ones(experiment_data.shape[0], dtype=np.int8)
if "smoke" in experiment_file.name
else np.zeros(experiment_data.shape[0], dtype=np.int8)
)
experiment_semi_targets = np.zeros(experiment_data.shape[0], dtype=np.int8)
if "smoke" not in experiment_file.name:
experiment_semi_targets = np.ones(
experiment_data.shape[0], dtype=np.int8
)
elif experiment_file.name in semi_targets_given:
semi_target_begin_frame, semi_target_end_frame = semi_targets_given[
experiment_file.name
]
experiment_semi_targets[
semi_target_begin_frame:semi_target_end_frame
] = -1
else:
raise ValueError(
"smoke experiment not in given semi_targets. required for selective training"
)
experiment_file_ids.append(
np.full(experiment_data.shape[0], file_idx, dtype=np.int8)
)
experiment_frame_ids.append(
np.arange(experiment_data.shape[0], dtype=np.int32)
)
experiments_data.append(experiment_data)
experiments_targets.append(experiment_targets)
experiments_semi_targets.append(experiment_semi_targets)
logger.info(
f"Train/Test experiments: {[experiment_file.name for experiment_file in experiment_files]}"
)
lidar_projections = np.concatenate(experiments_data)
smoke_presence = np.concatenate(experiments_targets)
semi_targets = np.concatenate(experiments_semi_targets)
file_ids = np.concatenate(experiment_file_ids)
frame_ids = np.concatenate(experiment_frame_ids)
self.file_names = file_names
np.random.seed(seed)
shuffled_indices = np.random.permutation(lidar_projections.shape[0])
shuffled_lidar_projections = lidar_projections[shuffled_indices]
shuffled_smoke_presence = smoke_presence[shuffled_indices]
shuffled_file_ids = file_ids[shuffled_indices]
shuffled_frame_ids = frame_ids[shuffled_indices]
shuffled_semis = semi_targets[shuffled_indices]
# check if there are enough known normal and known outlier samples
outlier_indices = np.where(shuffled_semis == -1)[0]
normal_indices = np.where(shuffled_semis == 1)[0]
if len(outlier_indices) < num_known_outlier:
raise ValueError(
f"Not enough known outliers in dataset. Required: {num_known_outlier}, Found: {len(outlier_indices)}"
)
# randomly select known normal and outlier samples
keep_outlier_indices = np.random.choice(
outlier_indices, size=num_known_outlier, replace=False
)
# put outliers that are not kept into test set and the same number of normal samples aside for testing
test_outlier_indices = np.setdiff1d(outlier_indices, keep_outlier_indices)
num_test_outliers = len(test_outlier_indices)
test_normal_indices = np.random.choice(
normal_indices,
size=num_test_outliers * ratio_test_normal_to_anomalous,
replace=False,
)
# combine test indices
test_indices = np.concatenate([test_outlier_indices, test_normal_indices])
# training indices are the rest
train_indices = np.setdiff1d(np.arange(len(shuffled_semis)), test_indices)
if train:
self.data = shuffled_lidar_projections[train_indices]
self.targets = shuffled_smoke_presence[train_indices]
semi_targets = shuffled_semis[train_indices]
self.shuffled_file_ids = shuffled_file_ids[train_indices]
self.shuffled_frame_ids = shuffled_frame_ids[train_indices]
else:
self.data = shuffled_lidar_projections[test_indices]
self.targets = shuffled_smoke_presence[test_indices]
semi_targets = shuffled_semis[test_indices]
self.shuffled_file_ids = shuffled_file_ids[test_indices]
self.shuffled_frame_ids = shuffled_frame_ids[test_indices]
self.data = np.nan_to_num(self.data)
self.data = torch.tensor(self.data)
self.targets = torch.tensor(self.targets, dtype=torch.int8)
self.semi_targets = torch.tensor(semi_targets, dtype=torch.int8)
# log some stats to ensure the data is loaded correctly
if train:
logger.info(
f"Training set: {len(self.data)} samples, {sum(self.semi_targets == -1)} semi-supervised samples"
)
else:
logger.info(
f"Test set: {len(self.data)} samples, {sum(self.semi_targets == -1)} semi-supervised samples"
)
def __len__(self):
return len(self.data)
def __getitem__(self, index):
"""Override the original method of the MNIST class.
Args:
index (int): Index
Returns:
tuple: (image, target, semi_target, index)
"""
img, target, semi_target, file_id, frame_id = (
self.data[index],
int(self.targets[index]),
int(self.semi_targets[index]),
int(self.shuffled_file_ids[index]),
int(self.shuffled_frame_ids[index]),
)
# doing this so that it is consistent with all other datasets
# to return a PIL Image
img = Image.fromarray(img.numpy(), mode="F")
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target, semi_target, index, (file_id, frame_id)
return img, index, (file_id, frame_id)
def get_file_name_from_idx(self, idx: int):
return self.file_names[idx]
return self.file_names.get(idx, None)

View File

@@ -24,6 +24,7 @@ from utils.visualization.plot_images_grid import plot_images_grid
[
"train",
"infer",
"ae_elbow_test", # Add new action
]
),
)
@@ -76,8 +77,8 @@ from utils.visualization.plot_images_grid import plot_images_grid
@click.option(
"--k_fold_num",
type=int,
default=5,
help="Number of folds for k-fold cross-validation (default: 5).",
default=None,
help="Number of folds for k-fold cross-validation (default: None).",
)
@click.option(
"--num_known_normal",
@@ -277,6 +278,13 @@ from utils.visualization.plot_images_grid import plot_images_grid
default=-1,
help="Number of jobs for model training.",
)
@click.option(
"--ae_elbow_dims",
type=int,
multiple=True,
default=[128, 256, 384, 512, 768, 1024],
help="List of latent space dimensions to test for autoencoder elbow analysis.",
)
def main(
action,
dataset_name,
@@ -319,6 +327,7 @@ def main(
isoforest_max_samples,
isoforest_contamination,
isoforest_n_jobs_model,
ae_elbow_dims,
):
"""
Deep SAD, a method for deep semi-supervised anomaly detection.
@@ -402,7 +411,7 @@ def main(
ratio_known_outlier,
ratio_pollution,
random_state=np.random.RandomState(cfg.settings["seed"]),
k_fold=k_fold,
k_fold_num=k_fold_num,
num_known_normal=num_known_normal,
num_known_outlier=num_known_outlier,
)
@@ -593,18 +602,35 @@ def main(
# Plot most anomalous and most normal test samples
if train_deepsad:
indices, labels, scores = zip(*deepSAD.results["test_scores"])
# Use experiment-based scores for plotting
indices, labels, scores = zip(
*deepSAD.results["test"]["exp_based"]["scores"]
)
indices, labels, scores = (
np.array(indices),
np.array(labels),
np.array(scores),
)
# Filter out samples with unknown labels (0)
valid_mask = labels != 0
indices = indices[valid_mask]
labels = labels[valid_mask]
scores = scores[valid_mask]
# Convert labels from -1/1 to 0/1 for plotting
labels = (labels == -1).astype(int) # -1 (anomaly) → 1, 1 (normal) → 0
idx_all_sorted = indices[
np.argsort(scores)
] # from lowest to highest score
idx_normal_sorted = indices[labels == 0][
np.argsort(scores[labels == 0])
] # from lowest to highest score
]
# Optionally plot manual-based results:
# indices_m, labels_m, scores_m = zip(*deepSAD.results["test"]["manual_based"]["scores"])
# ...same processing as above...
if dataset_name in (
"mnist",
@@ -745,6 +771,71 @@ def main(
logger.info(
f"Inference: median={np.median(inference_results)} mean={np.mean(inference_results)} min={inference_results.min()} max={inference_results.max()}"
)
elif action == "ae_elbow_test":
# Load data once
dataset = load_dataset(
dataset_name,
data_path,
normal_class,
known_outlier_class,
n_known_outlier_classes,
ratio_known_normal,
ratio_known_outlier,
ratio_pollution,
random_state=np.random.RandomState(cfg.settings["seed"]),
)
# Dictionary to store results for each dimension
elbow_results = {"dimensions": list(ae_elbow_dims), "ae_results": {}}
# Test each dimension
for rep_dim in ae_elbow_dims:
logger.info(f"Testing autoencoder with latent dimension: {rep_dim}")
# Initialize DeepSAD model with current dimension
deepSAD = DeepSAD(cfg.settings["eta"])
deepSAD.set_network(
net_name, rep_dim=rep_dim
) # Pass rep_dim to network builder
# Pretrain autoencoder with current dimension
deepSAD.pretrain(
dataset,
optimizer_name=cfg.settings["ae_optimizer_name"],
lr=cfg.settings["ae_lr"],
n_epochs=cfg.settings["ae_n_epochs"],
lr_milestones=cfg.settings["ae_lr_milestone"],
batch_size=cfg.settings["ae_batch_size"],
weight_decay=cfg.settings["ae_weight_decay"],
device=device,
n_jobs_dataloader=n_jobs_dataloader,
)
# Store results for this dimension
elbow_results["ae_results"][rep_dim] = {
"train_time": deepSAD.ae.train_time,
"train_loss": deepSAD.ae.train_loss,
"test_auc": deepSAD.ae.test_auc, # if available
"test_loss": deepSAD.ae.test_loss,
"scores": deepSAD.ae.test_scores,
}
logger.info(f"Finished testing dimension {rep_dim}")
logger.info(f"Train time: {deepSAD.ae.train_time:.3f}s")
logger.info(f"Final train loss: {deepSAD.ae.train_loss[-1]:.6f}")
logger.info(f"Final test loss: {deepSAD.ae.test_loss:.6f}")
# Clear some memory
del deepSAD
torch.cuda.empty_cache()
# Save all results
results_path = Path(xp_path) / "ae_elbow_results.pkl"
with open(results_path, "wb") as f:
pickle.dump(elbow_results, f)
logger.info(f"Saved elbow test results to {results_path}")
else:
logger.error(f"Unknown action: {action}")

View File

@@ -55,6 +55,15 @@ class DeepSADTrainer(BaseTrainer):
self.test_time = None
self.test_scores = None
# Add new attributes for storing indices
self.train_indices = None
self.train_file_ids = None
self.train_frame_ids = None
self.test_indices = None
self.test_file_ids = None
self.test_frame_ids = None
def train(
self, dataset: BaseADDataset, net: BaseNet, k_fold_idx: int = None
) -> BaseNet:
@@ -95,12 +104,18 @@ class DeepSADTrainer(BaseTrainer):
logger.info("Starting training...")
start_time = time.time()
net.train()
# Lists to collect all indices during training
all_indices = []
all_file_ids = []
all_frame_ids = []
for epoch in range(self.n_epochs):
epoch_loss = 0.0
n_batches = 0
epoch_start_time = time.time()
for data in train_loader:
inputs, _, semi_targets, _, _ = data
inputs, _, _, semi_targets, idx, (file_id, frame_id) = data
inputs, semi_targets = (
inputs.to(self.device),
semi_targets.to(self.device),
@@ -124,6 +139,11 @@ class DeepSADTrainer(BaseTrainer):
epoch_loss += loss.item()
n_batches += 1
# Store indices
all_indices.extend(idx.cpu().numpy().tolist())
all_file_ids.extend(file_id.cpu().numpy().tolist())
all_frame_ids.extend(frame_id.cpu().numpy().tolist())
scheduler.step()
if epoch in self.lr_milestones:
logger.info(
@@ -142,6 +162,11 @@ class DeepSADTrainer(BaseTrainer):
logger.info("Training Time: {:.3f}s".format(self.train_time))
logger.info("Finished training.")
# Store all training indices
self.train_indices = np.array(all_indices)
self.train_file_ids = np.array(all_file_ids)
self.train_frame_ids = np.array(all_frame_ids)
return net
def infer(self, dataset: BaseADDataset, net: BaseNet):
@@ -162,9 +187,14 @@ class DeepSADTrainer(BaseTrainer):
all_outputs = np.zeros((len(inference_loader.dataset), 1024), dtype=np.float32)
scores = []
net.eval()
all_indices = []
all_file_ids = []
all_frame_ids = []
with torch.no_grad():
for data in inference_loader:
inputs, idx = data
inputs, idx, (file_id, frame_id) = data
inputs = inputs.to(self.device)
idx = idx.to(self.device)
@@ -177,6 +207,11 @@ class DeepSADTrainer(BaseTrainer):
dist = torch.sum((outputs - self.c) ** 2, dim=1)
scores += dist.cpu().data.numpy().tolist()
# Store indices
all_indices.extend(idx.cpu().numpy().tolist())
all_file_ids.extend(file_id.cpu().numpy().tolist())
all_frame_ids.extend(frame_id.cpu().numpy().tolist())
n_batches += 1
self.inference_time = time.time() - start_time
@@ -185,6 +220,17 @@ class DeepSADTrainer(BaseTrainer):
logger.info("Inference Time: {:.3f}s".format(self.inference_time))
logger.info("Finished inference.")
# Store all inference indices
self.inference_indices = np.array(all_indices)
self.inference_file_ids = np.array(all_file_ids)
self.inference_frame_ids = np.array(all_frame_ids)
self.inference_index_mapping = {
"indices": self.inference_indices,
"file_ids": self.inference_file_ids,
"frame_ids": self.inference_frame_ids,
}
return np.array(scores), all_outputs
def test(self, dataset: BaseADDataset, net: BaseNet, k_fold_idx: int = None):
@@ -210,15 +256,34 @@ class DeepSADTrainer(BaseTrainer):
epoch_loss = 0.0
n_batches = 0
start_time = time.time()
idx_label_score = []
idx_label_score_exp = []
idx_label_score_manual = []
all_labels_exp = []
all_labels_manual = []
all_scores = []
all_idx = []
# Lists to collect all indices during testing
all_indices = []
all_file_ids = []
all_frame_ids = []
net.eval()
net.summary(receptive_field=True)
with torch.no_grad():
for data in test_loader:
inputs, labels, semi_targets, idx, _ = data
(
inputs,
labels_exp_based,
labels_manual_based,
semi_targets,
idx,
(file_id, frame_id),
) = data
inputs = inputs.to(self.device)
labels = labels.to(self.device)
labels_exp_based = labels_exp_based.to(self.device)
labels_manual_based = labels_manual_based.to(self.device)
semi_targets = semi_targets.to(self.device)
idx = idx.to(self.device)
@@ -232,34 +297,161 @@ class DeepSADTrainer(BaseTrainer):
loss = torch.mean(losses)
scores = dist
# Save triples of (idx, label, score) in a list
idx_label_score += list(
# Save for evaluation
idx_label_score_exp += list(
zip(
idx.cpu().data.numpy().tolist(),
labels.cpu().data.numpy().tolist(),
labels_exp_based.cpu().data.numpy().tolist(),
scores.cpu().data.numpy().tolist(),
)
)
idx_label_score_manual += list(
zip(
idx.cpu().data.numpy().tolist(),
labels_manual_based.cpu().data.numpy().tolist(),
scores.cpu().data.numpy().tolist(),
)
)
all_labels_exp.append(labels_exp_based.cpu().numpy())
all_labels_manual.append(labels_manual_based.cpu().numpy())
all_scores.append(scores.cpu().numpy())
all_idx.append(idx.cpu().numpy())
# Store indices
all_indices.extend(idx.cpu().numpy().tolist())
all_file_ids.extend(file_id.cpu().numpy().tolist())
all_frame_ids.extend(frame_id.cpu().numpy().tolist())
epoch_loss += loss.item()
n_batches += 1
self.test_time = time.time() - start_time
self.test_scores = idx_label_score
self.test_scores_exp_based = idx_label_score_exp
self.test_scores_manual_based = idx_label_score_manual
# Compute AUC
_, labels, scores = zip(*idx_label_score)
labels = np.array(labels)
scores = np.array(scores)
self.test_auc = roc_auc_score(labels, scores)
self.test_roc = roc_curve(labels, scores)
self.test_prc = precision_recall_curve(labels, scores)
self.test_ap = average_precision_score(labels, scores)
# Flatten arrays for counting and evaluation
all_labels_exp = np.concatenate(all_labels_exp)
all_labels_manual = np.concatenate(all_labels_manual)
all_scores = np.concatenate(all_scores)
all_idx = np.concatenate(all_idx)
# Count and log label stats for exp_based
n_exp_normal = np.sum(all_labels_exp == 1)
n_exp_anomaly = np.sum(all_labels_exp == -1)
n_exp_unknown = np.sum(all_labels_exp == 0)
logger.info(
f"Exp-based labels: normal(1)={n_exp_normal}, "
f"anomaly(-1)={n_exp_anomaly}, unknown(0)={n_exp_unknown}"
)
# Count and log label stats for manual_based
n_manual_normal = np.sum(all_labels_manual == 1)
n_manual_anomaly = np.sum(all_labels_manual == -1)
n_manual_unknown = np.sum(all_labels_manual == 0)
logger.info(
f"Manual-based labels: normal(1)={n_manual_normal}, "
f"anomaly(-1)={n_manual_anomaly}, unknown(0)={n_manual_unknown}"
)
# --- Evaluation for exp_based (only labeled samples) ---
idxs_exp, labels_exp, scores_exp = zip(*idx_label_score_exp)
labels_exp = np.array(labels_exp)
scores_exp = np.array(scores_exp)
# Filter out unknown labels and convert to binary (1: anomaly, 0: normal) for ROC
valid_mask_exp = labels_exp != 0
if np.any(valid_mask_exp):
# Convert to binary labels for ROC (-1 → 1, 1 → 0)
labels_exp_binary = (labels_exp[valid_mask_exp] == -1).astype(int)
scores_exp_valid = scores_exp[valid_mask_exp]
self.test_auc_exp_based = roc_auc_score(labels_exp_binary, scores_exp_valid)
self.test_roc_exp_based = roc_curve(labels_exp_binary, scores_exp_valid)
self.test_prc_exp_based = precision_recall_curve(
labels_exp_binary, scores_exp_valid
)
self.test_ap_exp_based = average_precision_score(
labels_exp_binary, scores_exp_valid
)
# Log results
logger.info("Test Loss: {:.6f}".format(epoch_loss / n_batches))
logger.info("Test AUC: {:.2f}%".format(100.0 * self.test_auc))
logger.info(
"Test AUC (exp_based): {:.2f}%".format(100.0 * self.test_auc_exp_based)
)
else:
logger.info("Test AUC (exp_based): N/A (no labeled samples)")
self.test_auc_exp_based = None
self.test_roc_exp_based = None
self.test_prc_exp_based = None
self.test_ap_exp_based = None
logger.info("Test Time: {:.3f}s".format(self.test_time))
# --- Evaluation for manual_based (only labeled samples) ---
idxs_manual, labels_manual, scores_manual = zip(*idx_label_score_manual)
labels_manual = np.array(labels_manual)
scores_manual = np.array(scores_manual)
# Filter out unknown labels and convert to binary for ROC
valid_mask_manual = labels_manual != 0
if np.any(valid_mask_manual):
# Convert to binary labels for ROC (-1 → 1, 1 → 0)
labels_manual_binary = (labels_manual[valid_mask_manual] == -1).astype(int)
scores_manual_valid = scores_manual[valid_mask_manual]
self.test_auc_manual_based = roc_auc_score(
labels_manual_binary, scores_manual_valid
)
self.test_roc_manual_based = roc_curve(
labels_manual_binary, scores_manual_valid
)
self.test_prc_manual_based = precision_recall_curve(
labels_manual_binary, scores_manual_valid
)
self.test_ap_manual_based = average_precision_score(
labels_manual_binary, scores_manual_valid
)
logger.info(
"Test AUC (manual_based): {:.2f}%".format(
100.0 * self.test_auc_manual_based
)
)
else:
self.test_auc_manual_based = None
self.test_roc_manual_based = None
self.test_prc_manual_based = None
self.test_ap_manual_based = None
logger.info("Test AUC (manual_based): N/A (no labeled samples)")
# Store all test indices
self.test_indices = np.array(all_indices)
self.test_file_ids = np.array(all_file_ids)
self.test_frame_ids = np.array(all_frame_ids)
# Add logging for indices
logger.info(f"Number of test samples: {len(self.test_indices)}")
logger.info(f"Number of unique files: {len(np.unique(self.test_file_ids))}")
# Create a mapping of indices to their file/frame information
self.test_index_mapping = {
"indices": self.test_indices,
"file_ids": self.test_file_ids,
"frame_ids": self.test_frame_ids,
"exp_based": {
"indices": np.array(idxs_exp),
"labels": np.array(labels_exp),
"scores": np.array(scores_exp),
"valid_mask": valid_mask_exp,
},
"manual_based": {
"indices": np.array(idxs_manual),
"labels": np.array(labels_manual),
"scores": np.array(scores_manual),
"valid_mask": valid_mask_manual,
},
}
logger.info("Finished testing.")
def init_center_c(self, train_loader: DataLoader, net: BaseNet, eps=0.1):
@@ -272,7 +464,7 @@ class DeepSADTrainer(BaseTrainer):
with torch.no_grad():
for data in train_loader:
# get the inputs of the batch
inputs, _, _, _, _ = data
inputs, _, _, _, _, _ = data
inputs = inputs.to(self.device)
outputs = net(inputs)
n_samples += outputs.shape[0]

View File

@@ -83,7 +83,7 @@ class AETrainer(BaseTrainer):
n_batches = 0
epoch_start_time = time.time()
for data in train_loader:
inputs, _, _, _, file_frame_ids = data
inputs, _, _, _, _, file_frame_ids = data
inputs = inputs.to(self.device)
all_training_data.append(
np.dstack(
@@ -166,7 +166,7 @@ class AETrainer(BaseTrainer):
all_training_data = []
with torch.no_grad():
for data in test_loader:
inputs, labels, _, idx, file_frame_ids = data
inputs, labels, _, _, idx, file_frame_ids = data
inputs, labels, idx = (
inputs.to(self.device),
labels.to(self.device),