add torchscan for summary and receptive field (wip)

This commit is contained in:
Jan Kowalczyk
2025-06-04 09:45:24 +02:00
parent 3a0f35f21d
commit 3538b15073
5 changed files with 189 additions and 10 deletions

View File

@@ -1,6 +1,8 @@
import logging
import torch.nn as nn
import numpy as np
import torch.nn as nn
import torchscan
class BaseNet(nn.Module):
@@ -10,6 +12,7 @@ class BaseNet(nn.Module):
super().__init__()
self.logger = logging.getLogger(self.__class__.__name__)
self.rep_dim = None # representation dimensionality, i.e. dim of the code layer or last layer
self.input_dim = None # input dimensionality, i.e. dim of the input layer
def forward(self, *input):
"""
@@ -18,9 +21,17 @@ class BaseNet(nn.Module):
"""
raise NotImplementedError
def summary(self):
def summary(self, receptive_field: bool = False):
"""Network summary."""
net_parameters = filter(lambda p: p.requires_grad, self.parameters())
params = sum([np.prod(p.size()) for p in net_parameters])
self.logger.info("Trainable parameters: {}".format(params))
self.logger.info(self)
# net_parameters = filter(lambda p: p.requires_grad, self.parameters())
# params = sum([np.prod(p.size()) for p in net_parameters])
# self.logger.info("Trainable parameters: {}".format(params))
# self.logger.info(self)
if not self.input_dim:
self.logger.warning(
"Input dimension is not set. Please set input_dim before calling summary."
)
return
self.logger.info(
torchscan.summary(self, self.input_dim, receptive_field=receptive_field)
)