implemented inference

This commit is contained in:
Jan Kowalczyk
2024-07-04 15:36:01 +02:00
parent 745efbb8f5
commit 5014c41b24
13 changed files with 384 additions and 177 deletions

View File

@@ -86,6 +86,18 @@ class DeepSAD(object):
self.results["train_time"] = self.trainer.train_time
self.c = self.trainer.c.cpu().data.numpy().tolist() # get as list
def inference(
self, dataset: BaseADDataset, device: str = "cuda", n_jobs_dataloader: int = 0
):
"""Tests the Deep SAD model on the test data."""
if self.trainer is None:
self.trainer = DeepSADTrainer(
self.c, self.eta, device=device, n_jobs_dataloader=n_jobs_dataloader
)
return self.trainer.infer(dataset, self.net)
def test(
self, dataset: BaseADDataset, device: str = "cuda", n_jobs_dataloader: int = 0
):

View File

@@ -14,19 +14,39 @@ class TorchvisionDataset(BaseADDataset):
shuffle_train=True,
shuffle_test=False,
num_workers: int = 0,
) -> (DataLoader, DataLoader):
train_loader = DataLoader(
dataset=self.train_set,
batch_size=batch_size,
shuffle=shuffle_train,
num_workers=num_workers,
drop_last=True,
) -> (DataLoader, DataLoader, DataLoader):
train_loader = (
DataLoader(
dataset=self.train_set,
batch_size=batch_size,
shuffle=shuffle_train,
num_workers=num_workers,
drop_last=True,
)
if self.train_set is not None
else None
)
test_loader = DataLoader(
dataset=self.test_set,
batch_size=batch_size,
shuffle=shuffle_test,
num_workers=num_workers,
drop_last=False,
test_loader = (
DataLoader(
dataset=self.test_set,
batch_size=batch_size,
shuffle=shuffle_test,
num_workers=num_workers,
drop_last=False,
)
if self.test_set is not None
else None
)
return train_loader, test_loader
inference_loader = (
DataLoader(
dataset=self.inference_set,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
drop_last=False,
)
if self.inference_set is not None
else None
)
return train_loader, test_loader, inference_loader

View File

@@ -96,7 +96,9 @@ class IsoForest(object):
"""Tests the Isolation Forest model on the test data."""
logger = logging.getLogger()
_, test_loader = dataset.loaders(batch_size=128, num_workers=n_jobs_dataloader)
_, test_loader, _ = dataset.loaders(
batch_size=128, num_workers=n_jobs_dataloader
)
# Get data from loader
idx_label_score = []

View File

@@ -108,7 +108,9 @@ class KDE(object):
"""Tests the Kernel Density Estimation model on the test data."""
logger = logging.getLogger()
_, test_loader = dataset.loaders(batch_size=128, num_workers=n_jobs_dataloader)
_, test_loader, _ = dataset.loaders(
batch_size=128, num_workers=n_jobs_dataloader
)
# Get data from loader
idx_label_score = []

View File

@@ -77,7 +77,9 @@ class OCSVM(object):
best_auc = 0.0
# Sample hold-out set from test set
_, test_loader = dataset.loaders(batch_size=128, num_workers=n_jobs_dataloader)
_, test_loader, _ = dataset.loaders(
batch_size=128, num_workers=n_jobs_dataloader
)
X_test = ()
labels = []
@@ -163,7 +165,9 @@ class OCSVM(object):
"""Tests the OC-SVM model on the test data."""
logger = logging.getLogger()
_, test_loader = dataset.loaders(batch_size=128, num_workers=n_jobs_dataloader)
_, test_loader, _ = dataset.loaders(
batch_size=128, num_workers=n_jobs_dataloader
)
# Get data from loader
idx_label_score = []

View File

@@ -91,7 +91,9 @@ class SSAD(object):
best_auc = 0.0
# Sample hold-out set from test set
_, test_loader = dataset.loaders(batch_size=128, num_workers=n_jobs_dataloader)
_, test_loader, _ = dataset.loaders(
batch_size=128, num_workers=n_jobs_dataloader
)
X_test = ()
labels = []
@@ -190,7 +192,9 @@ class SSAD(object):
"""Tests the SSAD model on the test data."""
logger = logging.getLogger()
_, test_loader = dataset.loaders(batch_size=128, num_workers=n_jobs_dataloader)
_, test_loader, _ = dataset.loaders(
batch_size=128, num_workers=n_jobs_dataloader
)
# Get data from loader
idx_label_score = []

View File

@@ -16,6 +16,7 @@ def load_dataset(
ratio_known_outlier: float = 0.0,
ratio_pollution: float = 0.0,
random_state=None,
inference: bool = False,
):
"""Loads the dataset."""
@@ -42,6 +43,7 @@ def load_dataset(
ratio_known_normal=ratio_known_normal,
ratio_known_outlier=ratio_known_outlier,
ratio_pollution=ratio_pollution,
inference=inference,
)
if dataset_name == "elpv":

View File

@@ -6,6 +6,7 @@ from base.torchvision_dataset import TorchvisionDataset
from .preprocessing import create_semisupervised_setting
from typing import Callable, Optional
import logging
import torch
import torchvision.transforms as transforms
import random
@@ -22,6 +23,7 @@ class SubTer_Dataset(TorchvisionDataset):
ratio_known_normal: float = 0.0,
ratio_known_outlier: float = 0.0,
ratio_pollution: float = 0.0,
inference: bool = False,
):
super().__init__(root)
@@ -35,41 +37,47 @@ class SubTer_Dataset(TorchvisionDataset):
transform = transforms.ToTensor()
target_transform = transforms.Lambda(lambda x: int(x in self.outlier_classes))
# Get train set
train_set = MySubTer(
root=self.root,
transform=transform,
target_transform=target_transform,
train=True,
)
if inference:
self.inference_set = SubTerInference(
root=self.root,
transform=transform,
)
else:
# Get train set
train_set = SubTerTraining(
root=self.root,
transform=transform,
target_transform=target_transform,
train=True,
)
# Create semi-supervised setting
idx, _, semi_targets = create_semisupervised_setting(
train_set.targets.cpu().data.numpy(),
self.normal_classes,
self.outlier_classes,
self.outlier_classes,
ratio_known_normal,
ratio_known_outlier,
ratio_pollution,
)
train_set.semi_targets[idx] = torch.tensor(
np.array(semi_targets, dtype=np.int8)
) # set respective semi-supervised labels
# Create semi-supervised setting
idx, _, semi_targets = create_semisupervised_setting(
train_set.targets.cpu().data.numpy(),
self.normal_classes,
self.outlier_classes,
self.outlier_classes,
ratio_known_normal,
ratio_known_outlier,
ratio_pollution,
)
train_set.semi_targets[idx] = torch.tensor(
np.array(semi_targets, dtype=np.int8)
) # set respective semi-supervised labels
# Subset train_set to semi-supervised setup
self.train_set = Subset(train_set, idx)
# Subset train_set to semi-supervised setup
self.train_set = Subset(train_set, idx)
# Get test set
self.test_set = MySubTer(
root=self.root,
train=False,
transform=transform,
target_transform=target_transform,
)
# Get test set
self.test_set = SubTerTraining(
root=self.root,
train=False,
transform=transform,
target_transform=target_transform,
)
class MySubTer(VisionDataset):
class SubTerTraining(VisionDataset):
def __init__(
self,
@@ -81,7 +89,9 @@ class MySubTer(VisionDataset):
split=0.7,
seed=0,
):
super(MySubTer, self).__init__(root, transforms, transform, target_transform)
super(SubTerTraining, self).__init__(
root, transforms, transform, target_transform
)
experiments_data = []
experiments_targets = []
@@ -153,3 +163,49 @@ class MySubTer(VisionDataset):
target = self.target_transform(target)
return img, target, semi_target, index
class SubTerInference(VisionDataset):
def __init__(
self,
root: str,
transforms: Optional[Callable] = None,
transform: Optional[Callable] = None,
):
super(SubTerInference, self).__init__(root, transforms, transform)
logger = logging.getLogger()
self.experiment_file_path = Path(root)
if not self.experiment_file_path.is_file():
logger.error(
"For inference the data path has to be a single experiment file!"
)
raise Exception("Inference data is not a loadable file!")
self.data = np.load(self.experiment_file_path)
self.data = np.nan_to_num(self.data)
self.data = torch.tensor(self.data)
def __len__(self):
return len(self.data)
def __getitem__(self, index):
"""Override the original method of the MNIST class.
Args:
index (int): Index
Returns:
tuple: (image, index)
"""
img = self.data[index]
# doing this so that it is consistent with all other datasets
# to return a PIL Image
img = Image.fromarray(img.numpy(), mode="F")
if self.transform is not None:
img = self.transform(img)
return img, index

View File

@@ -3,6 +3,7 @@ import torch
import logging
import random
import numpy as np
from pathlib import Path
from utils.config import Config
from utils.visualization.plot_images_grid import plot_images_grid
@@ -14,6 +15,15 @@ from datasets.main import load_dataset
# Settings
################################################################################
@click.command()
@click.argument(
"action",
type=click.Choice(
[
"train",
"infer",
]
),
)
@click.argument(
"dataset_name",
type=click.Choice(
@@ -203,6 +213,7 @@ from datasets.main import load_dataset
"If > 1, the specified number of outlier classes will be sampled at random.",
)
def main(
action,
dataset_name,
net_name,
xp_path,
@@ -303,138 +314,194 @@ def main(
logger.info("Number of threads: %d" % num_threads)
logger.info("Number of dataloader workers: %d" % n_jobs_dataloader)
# Load data
dataset = load_dataset(
dataset_name,
data_path,
normal_class,
known_outlier_class,
n_known_outlier_classes,
ratio_known_normal,
ratio_known_outlier,
ratio_pollution,
random_state=np.random.RandomState(cfg.settings["seed"]),
)
# Log random sample of known anomaly classes if more than 1 class
if n_known_outlier_classes > 1:
logger.info("Known anomaly classes: %s" % (dataset.known_outlier_classes,))
if action == "train":
# Initialize DeepSAD model and set neural network phi
deepSAD = DeepSAD(cfg.settings["eta"])
deepSAD.set_network(net_name)
# If specified, load Deep SAD model (center c, network weights, and possibly autoencoder weights)
if load_model:
deepSAD.load_model(model_path=load_model, load_ae=True, map_location=device)
logger.info("Loading model from %s." % load_model)
logger.info("Pretraining: %s" % pretrain)
if pretrain:
# Log pretraining details
logger.info("Pretraining optimizer: %s" % cfg.settings["ae_optimizer_name"])
logger.info("Pretraining learning rate: %g" % cfg.settings["ae_lr"])
logger.info("Pretraining epochs: %d" % cfg.settings["ae_n_epochs"])
logger.info(
"Pretraining learning rate scheduler milestones: %s"
% (cfg.settings["ae_lr_milestone"],)
# Load data
dataset = load_dataset(
dataset_name,
data_path,
normal_class,
known_outlier_class,
n_known_outlier_classes,
ratio_known_normal,
ratio_known_outlier,
ratio_pollution,
random_state=np.random.RandomState(cfg.settings["seed"]),
)
logger.info("Pretraining batch size: %d" % cfg.settings["ae_batch_size"])
logger.info("Pretraining weight decay: %g" % cfg.settings["ae_weight_decay"])
# Log random sample of known anomaly classes if more than 1 class
if n_known_outlier_classes > 1:
logger.info("Known anomaly classes: %s" % (dataset.known_outlier_classes,))
# Pretrain model on dataset (via autoencoder)
deepSAD.pretrain(
# Initialize DeepSAD model and set neural network phi
deepSAD = DeepSAD(cfg.settings["eta"])
deepSAD.set_network(net_name)
# If specified, load Deep SAD model (center c, network weights, and possibly autoencoder weights)
if load_model:
deepSAD.load_model(model_path=load_model, load_ae=True, map_location=device)
logger.info("Loading model from %s." % load_model)
logger.info("Pretraining: %s" % pretrain)
if pretrain:
# Log pretraining details
logger.info("Pretraining optimizer: %s" % cfg.settings["ae_optimizer_name"])
logger.info("Pretraining learning rate: %g" % cfg.settings["ae_lr"])
logger.info("Pretraining epochs: %d" % cfg.settings["ae_n_epochs"])
logger.info(
"Pretraining learning rate scheduler milestones: %s"
% (cfg.settings["ae_lr_milestone"],)
)
logger.info("Pretraining batch size: %d" % cfg.settings["ae_batch_size"])
logger.info(
"Pretraining weight decay: %g" % cfg.settings["ae_weight_decay"]
)
# Pretrain model on dataset (via autoencoder)
deepSAD.pretrain(
dataset,
optimizer_name=cfg.settings["ae_optimizer_name"],
lr=cfg.settings["ae_lr"],
n_epochs=cfg.settings["ae_n_epochs"],
lr_milestones=cfg.settings["ae_lr_milestone"],
batch_size=cfg.settings["ae_batch_size"],
weight_decay=cfg.settings["ae_weight_decay"],
device=device,
n_jobs_dataloader=n_jobs_dataloader,
)
# Save pretraining results
deepSAD.save_ae_results(export_json=xp_path + "/ae_results.json")
# Log training details
logger.info("Training optimizer: %s" % cfg.settings["optimizer_name"])
logger.info("Training learning rate: %g" % cfg.settings["lr"])
logger.info("Training epochs: %d" % cfg.settings["n_epochs"])
logger.info(
"Training learning rate scheduler milestones: %s"
% (cfg.settings["lr_milestone"],)
)
logger.info("Training batch size: %d" % cfg.settings["batch_size"])
logger.info("Training weight decay: %g" % cfg.settings["weight_decay"])
# Train model on dataset
deepSAD.train(
dataset,
optimizer_name=cfg.settings["ae_optimizer_name"],
lr=cfg.settings["ae_lr"],
n_epochs=cfg.settings["ae_n_epochs"],
lr_milestones=cfg.settings["ae_lr_milestone"],
batch_size=cfg.settings["ae_batch_size"],
weight_decay=cfg.settings["ae_weight_decay"],
optimizer_name=cfg.settings["optimizer_name"],
lr=cfg.settings["lr"],
n_epochs=cfg.settings["n_epochs"],
lr_milestones=cfg.settings["lr_milestone"],
batch_size=cfg.settings["batch_size"],
weight_decay=cfg.settings["weight_decay"],
device=device,
n_jobs_dataloader=n_jobs_dataloader,
)
# Save pretraining results
deepSAD.save_ae_results(export_json=xp_path + "/ae_results.json")
# Test model
deepSAD.test(dataset, device=device, n_jobs_dataloader=n_jobs_dataloader)
# Log training details
logger.info("Training optimizer: %s" % cfg.settings["optimizer_name"])
logger.info("Training learning rate: %g" % cfg.settings["lr"])
logger.info("Training epochs: %d" % cfg.settings["n_epochs"])
logger.info(
"Training learning rate scheduler milestones: %s"
% (cfg.settings["lr_milestone"],)
)
logger.info("Training batch size: %d" % cfg.settings["batch_size"])
logger.info("Training weight decay: %g" % cfg.settings["weight_decay"])
# Save results, model, and configuration
deepSAD.save_results(export_json=xp_path + "/results.json")
deepSAD.save_model(export_model=xp_path + "/model.tar")
cfg.save_config(export_json=xp_path + "/config.json")
# Train model on dataset
deepSAD.train(
dataset,
optimizer_name=cfg.settings["optimizer_name"],
lr=cfg.settings["lr"],
n_epochs=cfg.settings["n_epochs"],
lr_milestones=cfg.settings["lr_milestone"],
batch_size=cfg.settings["batch_size"],
weight_decay=cfg.settings["weight_decay"],
device=device,
n_jobs_dataloader=n_jobs_dataloader,
)
# Plot most anomalous and most normal test samples
indices, labels, scores = zip(*deepSAD.results["test_scores"])
indices, labels, scores = np.array(indices), np.array(labels), np.array(scores)
idx_all_sorted = indices[np.argsort(scores)] # from lowest to highest score
idx_normal_sorted = indices[labels == 0][
np.argsort(scores[labels == 0])
] # from lowest to highest score
# Test model
deepSAD.test(dataset, device=device, n_jobs_dataloader=n_jobs_dataloader)
if dataset_name in ("mnist", "fmnist", "cifar10", "elpv"):
# Save results, model, and configuration
deepSAD.save_results(export_json=xp_path + "/results.json")
deepSAD.save_model(export_model=xp_path + "/model.tar")
cfg.save_config(export_json=xp_path + "/config.json")
# Plot most anomalous and most normal test samples
indices, labels, scores = zip(*deepSAD.results["test_scores"])
indices, labels, scores = np.array(indices), np.array(labels), np.array(scores)
idx_all_sorted = indices[np.argsort(scores)] # from lowest to highest score
idx_normal_sorted = indices[labels == 0][
np.argsort(scores[labels == 0])
] # from lowest to highest score
if dataset_name in ("mnist", "fmnist", "cifar10", "elpv"):
if dataset_name in ("mnist", "fmnist", "elpv"):
X_all_low = dataset.test_set.data[idx_all_sorted[:32], ...].unsqueeze(1)
X_all_high = dataset.test_set.data[idx_all_sorted[-32:], ...].unsqueeze(1)
X_normal_low = dataset.test_set.data[idx_normal_sorted[:32], ...].unsqueeze(
1
)
X_normal_high = dataset.test_set.data[
idx_normal_sorted[-32:], ...
].unsqueeze(1)
if dataset_name == "cifar10":
X_all_low = torch.tensor(
np.transpose(
dataset.test_set.data[idx_all_sorted[:32], ...], (0, 3, 1, 2)
if dataset_name in ("mnist", "fmnist", "elpv"):
X_all_low = dataset.test_set.data[idx_all_sorted[:32], ...].unsqueeze(1)
X_all_high = dataset.test_set.data[idx_all_sorted[-32:], ...].unsqueeze(
1
)
)
X_all_high = torch.tensor(
np.transpose(
dataset.test_set.data[idx_all_sorted[-32:], ...], (0, 3, 1, 2)
)
)
X_normal_low = torch.tensor(
np.transpose(
dataset.test_set.data[idx_normal_sorted[:32], ...], (0, 3, 1, 2)
)
)
X_normal_high = torch.tensor(
np.transpose(
dataset.test_set.data[idx_normal_sorted[-32:], ...], (0, 3, 1, 2)
)
)
X_normal_low = dataset.test_set.data[
idx_normal_sorted[:32], ...
].unsqueeze(1)
X_normal_high = dataset.test_set.data[
idx_normal_sorted[-32:], ...
].unsqueeze(1)
plot_images_grid(X_all_low, export_img=xp_path + "/all_low", padding=2)
plot_images_grid(X_all_high, export_img=xp_path + "/all_high", padding=2)
plot_images_grid(X_normal_low, export_img=xp_path + "/normals_low", padding=2)
plot_images_grid(X_normal_high, export_img=xp_path + "/normals_high", padding=2)
if dataset_name == "cifar10":
X_all_low = torch.tensor(
np.transpose(
dataset.test_set.data[idx_all_sorted[:32], ...], (0, 3, 1, 2)
)
)
X_all_high = torch.tensor(
np.transpose(
dataset.test_set.data[idx_all_sorted[-32:], ...], (0, 3, 1, 2)
)
)
X_normal_low = torch.tensor(
np.transpose(
dataset.test_set.data[idx_normal_sorted[:32], ...], (0, 3, 1, 2)
)
)
X_normal_high = torch.tensor(
np.transpose(
dataset.test_set.data[idx_normal_sorted[-32:], ...],
(0, 3, 1, 2),
)
)
plot_images_grid(X_all_low, export_img=xp_path + "/all_low", padding=2)
plot_images_grid(X_all_high, export_img=xp_path + "/all_high", padding=2)
plot_images_grid(
X_normal_low, export_img=xp_path + "/normals_low", padding=2
)
plot_images_grid(
X_normal_high, export_img=xp_path + "/normals_high", padding=2
)
elif action == "infer":
dataset = load_dataset(
dataset_name,
data_path,
normal_class,
known_outlier_class,
n_known_outlier_classes,
ratio_known_normal,
ratio_known_outlier,
ratio_pollution,
random_state=np.random.RandomState(cfg.settings["seed"]),
inference=True,
)
# Log random sample of known anomaly classes if more than 1 class
if n_known_outlier_classes > 1:
logger.info("Known anomaly classes: %s" % (dataset.known_outlier_classes,))
# Initialize DeepSAD model and set neural network phi
deepSAD = DeepSAD(cfg.settings["eta"])
deepSAD.set_network(net_name)
# If specified, load Deep SAD model (center c, network weights, and possibly autoencoder weights)
if not load_model:
logger.error(
"For inference mode a model has to be loaded! Pass the --load_model option with the model path!"
)
return
deepSAD.load_model(model_path=load_model, load_ae=True, map_location=device)
logger.info("Loading model from %s." % load_model)
inference_results = deepSAD.inference(
dataset, device=device, n_jobs_dataloader=n_jobs_dataloader
)
inference_results_path = (
Path(xp_path) / "inference" / Path(dataset.root).with_suffix(".npy").stem
)
inference_results_path.parent.mkdir(parents=True, exist_ok=True)
np.save(inference_results_path, inference_results, fix_imports=False)
logger.info(
f"Inference: median={np.median(inference_results)} mean={np.mean(inference_results)} min={inference_results.min()} max={inference_results.max()}"
)
else:
logger.error(f"Unknown action: {action}")
if __name__ == "__main__":

View File

@@ -54,7 +54,7 @@ class DeepSADTrainer(BaseTrainer):
logger = logging.getLogger()
# Get train data loader
train_loader, _ = dataset.loaders(
train_loader, _, _ = dataset.loaders(
batch_size=self.batch_size, num_workers=self.n_jobs_dataloader
)
@@ -130,11 +130,49 @@ class DeepSADTrainer(BaseTrainer):
return net
def infer(self, dataset: BaseADDataset, net: BaseNet):
logger = logging.getLogger()
# Get test data loader
_, _, inference_loader = dataset.loaders(
batch_size=self.batch_size, num_workers=self.n_jobs_dataloader
)
# Set device for network
net = net.to(self.device)
# Testing
logger.info("Starting inference...")
n_batches = 0
start_time = time.time()
scores = []
net.eval()
with torch.no_grad():
for data in inference_loader:
inputs, idx = data
inputs = inputs.to(self.device)
idx = idx.to(self.device)
outputs = net(inputs)
dist = torch.sum((outputs - self.c) ** 2, dim=1)
scores += dist.cpu().data.numpy().tolist()
n_batches += 1
self.inference_time = time.time() - start_time
# Log results
logger.info("Inference Time: {:.3f}s".format(self.inference_time))
logger.info("Finished inference.")
return np.array(scores)
def test(self, dataset: BaseADDataset, net: BaseNet):
logger = logging.getLogger()
# Get test data loader
_, test_loader = dataset.loaders(
_, test_loader, _ = dataset.loaders(
batch_size=self.batch_size, num_workers=self.n_jobs_dataloader
)

View File

@@ -49,7 +49,7 @@ class SemiDeepGenerativeTrainer(BaseTrainer):
logger = logging.getLogger()
# Get train data loader
train_loader, _ = dataset.loaders(
train_loader, _, _ = dataset.loaders(
batch_size=self.batch_size, num_workers=self.n_jobs_dataloader
)
@@ -152,7 +152,7 @@ class SemiDeepGenerativeTrainer(BaseTrainer):
logger = logging.getLogger()
# Get test data loader
_, test_loader = dataset.loaders(
_, test_loader, _ = dataset.loaders(
batch_size=self.batch_size, num_workers=self.n_jobs_dataloader
)

View File

@@ -44,7 +44,7 @@ class AETrainer(BaseTrainer):
logger = logging.getLogger()
# Get train data loader
train_loader, _ = dataset.loaders(
train_loader, _, _ = dataset.loaders(
batch_size=self.batch_size, num_workers=self.n_jobs_dataloader
)
@@ -115,7 +115,7 @@ class AETrainer(BaseTrainer):
logger = logging.getLogger()
# Get test data loader
_, test_loader = dataset.loaders(
_, test_loader, _ = dataset.loaders(
batch_size=self.batch_size, num_workers=self.n_jobs_dataloader
)

View File

@@ -44,7 +44,7 @@ class VAETrainer(BaseTrainer):
logger = logging.getLogger()
# Get train data loader
train_loader, _ = dataset.loaders(
train_loader, _, _ = dataset.loaders(
batch_size=self.batch_size, num_workers=self.n_jobs_dataloader
)
@@ -117,7 +117,7 @@ class VAETrainer(BaseTrainer):
logger = logging.getLogger()
# Get test data loader
_, test_loader = dataset.loaders(
_, test_loader, _ = dataset.loaders(
batch_size=self.batch_size, num_workers=self.n_jobs_dataloader
)