implemented inference

This commit is contained in:
Jan Kowalczyk
2024-07-04 15:36:01 +02:00
parent 745efbb8f5
commit 5014c41b24
13 changed files with 384 additions and 177 deletions

View File

@@ -3,6 +3,7 @@ import torch
import logging
import random
import numpy as np
from pathlib import Path
from utils.config import Config
from utils.visualization.plot_images_grid import plot_images_grid
@@ -14,6 +15,15 @@ from datasets.main import load_dataset
# Settings
################################################################################
@click.command()
@click.argument(
"action",
type=click.Choice(
[
"train",
"infer",
]
),
)
@click.argument(
"dataset_name",
type=click.Choice(
@@ -203,6 +213,7 @@ from datasets.main import load_dataset
"If > 1, the specified number of outlier classes will be sampled at random.",
)
def main(
action,
dataset_name,
net_name,
xp_path,
@@ -303,138 +314,194 @@ def main(
logger.info("Number of threads: %d" % num_threads)
logger.info("Number of dataloader workers: %d" % n_jobs_dataloader)
# Load data
dataset = load_dataset(
dataset_name,
data_path,
normal_class,
known_outlier_class,
n_known_outlier_classes,
ratio_known_normal,
ratio_known_outlier,
ratio_pollution,
random_state=np.random.RandomState(cfg.settings["seed"]),
)
# Log random sample of known anomaly classes if more than 1 class
if n_known_outlier_classes > 1:
logger.info("Known anomaly classes: %s" % (dataset.known_outlier_classes,))
if action == "train":
# Initialize DeepSAD model and set neural network phi
deepSAD = DeepSAD(cfg.settings["eta"])
deepSAD.set_network(net_name)
# If specified, load Deep SAD model (center c, network weights, and possibly autoencoder weights)
if load_model:
deepSAD.load_model(model_path=load_model, load_ae=True, map_location=device)
logger.info("Loading model from %s." % load_model)
logger.info("Pretraining: %s" % pretrain)
if pretrain:
# Log pretraining details
logger.info("Pretraining optimizer: %s" % cfg.settings["ae_optimizer_name"])
logger.info("Pretraining learning rate: %g" % cfg.settings["ae_lr"])
logger.info("Pretraining epochs: %d" % cfg.settings["ae_n_epochs"])
logger.info(
"Pretraining learning rate scheduler milestones: %s"
% (cfg.settings["ae_lr_milestone"],)
# Load data
dataset = load_dataset(
dataset_name,
data_path,
normal_class,
known_outlier_class,
n_known_outlier_classes,
ratio_known_normal,
ratio_known_outlier,
ratio_pollution,
random_state=np.random.RandomState(cfg.settings["seed"]),
)
logger.info("Pretraining batch size: %d" % cfg.settings["ae_batch_size"])
logger.info("Pretraining weight decay: %g" % cfg.settings["ae_weight_decay"])
# Log random sample of known anomaly classes if more than 1 class
if n_known_outlier_classes > 1:
logger.info("Known anomaly classes: %s" % (dataset.known_outlier_classes,))
# Pretrain model on dataset (via autoencoder)
deepSAD.pretrain(
# Initialize DeepSAD model and set neural network phi
deepSAD = DeepSAD(cfg.settings["eta"])
deepSAD.set_network(net_name)
# If specified, load Deep SAD model (center c, network weights, and possibly autoencoder weights)
if load_model:
deepSAD.load_model(model_path=load_model, load_ae=True, map_location=device)
logger.info("Loading model from %s." % load_model)
logger.info("Pretraining: %s" % pretrain)
if pretrain:
# Log pretraining details
logger.info("Pretraining optimizer: %s" % cfg.settings["ae_optimizer_name"])
logger.info("Pretraining learning rate: %g" % cfg.settings["ae_lr"])
logger.info("Pretraining epochs: %d" % cfg.settings["ae_n_epochs"])
logger.info(
"Pretraining learning rate scheduler milestones: %s"
% (cfg.settings["ae_lr_milestone"],)
)
logger.info("Pretraining batch size: %d" % cfg.settings["ae_batch_size"])
logger.info(
"Pretraining weight decay: %g" % cfg.settings["ae_weight_decay"]
)
# Pretrain model on dataset (via autoencoder)
deepSAD.pretrain(
dataset,
optimizer_name=cfg.settings["ae_optimizer_name"],
lr=cfg.settings["ae_lr"],
n_epochs=cfg.settings["ae_n_epochs"],
lr_milestones=cfg.settings["ae_lr_milestone"],
batch_size=cfg.settings["ae_batch_size"],
weight_decay=cfg.settings["ae_weight_decay"],
device=device,
n_jobs_dataloader=n_jobs_dataloader,
)
# Save pretraining results
deepSAD.save_ae_results(export_json=xp_path + "/ae_results.json")
# Log training details
logger.info("Training optimizer: %s" % cfg.settings["optimizer_name"])
logger.info("Training learning rate: %g" % cfg.settings["lr"])
logger.info("Training epochs: %d" % cfg.settings["n_epochs"])
logger.info(
"Training learning rate scheduler milestones: %s"
% (cfg.settings["lr_milestone"],)
)
logger.info("Training batch size: %d" % cfg.settings["batch_size"])
logger.info("Training weight decay: %g" % cfg.settings["weight_decay"])
# Train model on dataset
deepSAD.train(
dataset,
optimizer_name=cfg.settings["ae_optimizer_name"],
lr=cfg.settings["ae_lr"],
n_epochs=cfg.settings["ae_n_epochs"],
lr_milestones=cfg.settings["ae_lr_milestone"],
batch_size=cfg.settings["ae_batch_size"],
weight_decay=cfg.settings["ae_weight_decay"],
optimizer_name=cfg.settings["optimizer_name"],
lr=cfg.settings["lr"],
n_epochs=cfg.settings["n_epochs"],
lr_milestones=cfg.settings["lr_milestone"],
batch_size=cfg.settings["batch_size"],
weight_decay=cfg.settings["weight_decay"],
device=device,
n_jobs_dataloader=n_jobs_dataloader,
)
# Save pretraining results
deepSAD.save_ae_results(export_json=xp_path + "/ae_results.json")
# Test model
deepSAD.test(dataset, device=device, n_jobs_dataloader=n_jobs_dataloader)
# Log training details
logger.info("Training optimizer: %s" % cfg.settings["optimizer_name"])
logger.info("Training learning rate: %g" % cfg.settings["lr"])
logger.info("Training epochs: %d" % cfg.settings["n_epochs"])
logger.info(
"Training learning rate scheduler milestones: %s"
% (cfg.settings["lr_milestone"],)
)
logger.info("Training batch size: %d" % cfg.settings["batch_size"])
logger.info("Training weight decay: %g" % cfg.settings["weight_decay"])
# Save results, model, and configuration
deepSAD.save_results(export_json=xp_path + "/results.json")
deepSAD.save_model(export_model=xp_path + "/model.tar")
cfg.save_config(export_json=xp_path + "/config.json")
# Train model on dataset
deepSAD.train(
dataset,
optimizer_name=cfg.settings["optimizer_name"],
lr=cfg.settings["lr"],
n_epochs=cfg.settings["n_epochs"],
lr_milestones=cfg.settings["lr_milestone"],
batch_size=cfg.settings["batch_size"],
weight_decay=cfg.settings["weight_decay"],
device=device,
n_jobs_dataloader=n_jobs_dataloader,
)
# Plot most anomalous and most normal test samples
indices, labels, scores = zip(*deepSAD.results["test_scores"])
indices, labels, scores = np.array(indices), np.array(labels), np.array(scores)
idx_all_sorted = indices[np.argsort(scores)] # from lowest to highest score
idx_normal_sorted = indices[labels == 0][
np.argsort(scores[labels == 0])
] # from lowest to highest score
# Test model
deepSAD.test(dataset, device=device, n_jobs_dataloader=n_jobs_dataloader)
if dataset_name in ("mnist", "fmnist", "cifar10", "elpv"):
# Save results, model, and configuration
deepSAD.save_results(export_json=xp_path + "/results.json")
deepSAD.save_model(export_model=xp_path + "/model.tar")
cfg.save_config(export_json=xp_path + "/config.json")
# Plot most anomalous and most normal test samples
indices, labels, scores = zip(*deepSAD.results["test_scores"])
indices, labels, scores = np.array(indices), np.array(labels), np.array(scores)
idx_all_sorted = indices[np.argsort(scores)] # from lowest to highest score
idx_normal_sorted = indices[labels == 0][
np.argsort(scores[labels == 0])
] # from lowest to highest score
if dataset_name in ("mnist", "fmnist", "cifar10", "elpv"):
if dataset_name in ("mnist", "fmnist", "elpv"):
X_all_low = dataset.test_set.data[idx_all_sorted[:32], ...].unsqueeze(1)
X_all_high = dataset.test_set.data[idx_all_sorted[-32:], ...].unsqueeze(1)
X_normal_low = dataset.test_set.data[idx_normal_sorted[:32], ...].unsqueeze(
1
)
X_normal_high = dataset.test_set.data[
idx_normal_sorted[-32:], ...
].unsqueeze(1)
if dataset_name == "cifar10":
X_all_low = torch.tensor(
np.transpose(
dataset.test_set.data[idx_all_sorted[:32], ...], (0, 3, 1, 2)
if dataset_name in ("mnist", "fmnist", "elpv"):
X_all_low = dataset.test_set.data[idx_all_sorted[:32], ...].unsqueeze(1)
X_all_high = dataset.test_set.data[idx_all_sorted[-32:], ...].unsqueeze(
1
)
)
X_all_high = torch.tensor(
np.transpose(
dataset.test_set.data[idx_all_sorted[-32:], ...], (0, 3, 1, 2)
)
)
X_normal_low = torch.tensor(
np.transpose(
dataset.test_set.data[idx_normal_sorted[:32], ...], (0, 3, 1, 2)
)
)
X_normal_high = torch.tensor(
np.transpose(
dataset.test_set.data[idx_normal_sorted[-32:], ...], (0, 3, 1, 2)
)
)
X_normal_low = dataset.test_set.data[
idx_normal_sorted[:32], ...
].unsqueeze(1)
X_normal_high = dataset.test_set.data[
idx_normal_sorted[-32:], ...
].unsqueeze(1)
plot_images_grid(X_all_low, export_img=xp_path + "/all_low", padding=2)
plot_images_grid(X_all_high, export_img=xp_path + "/all_high", padding=2)
plot_images_grid(X_normal_low, export_img=xp_path + "/normals_low", padding=2)
plot_images_grid(X_normal_high, export_img=xp_path + "/normals_high", padding=2)
if dataset_name == "cifar10":
X_all_low = torch.tensor(
np.transpose(
dataset.test_set.data[idx_all_sorted[:32], ...], (0, 3, 1, 2)
)
)
X_all_high = torch.tensor(
np.transpose(
dataset.test_set.data[idx_all_sorted[-32:], ...], (0, 3, 1, 2)
)
)
X_normal_low = torch.tensor(
np.transpose(
dataset.test_set.data[idx_normal_sorted[:32], ...], (0, 3, 1, 2)
)
)
X_normal_high = torch.tensor(
np.transpose(
dataset.test_set.data[idx_normal_sorted[-32:], ...],
(0, 3, 1, 2),
)
)
plot_images_grid(X_all_low, export_img=xp_path + "/all_low", padding=2)
plot_images_grid(X_all_high, export_img=xp_path + "/all_high", padding=2)
plot_images_grid(
X_normal_low, export_img=xp_path + "/normals_low", padding=2
)
plot_images_grid(
X_normal_high, export_img=xp_path + "/normals_high", padding=2
)
elif action == "infer":
dataset = load_dataset(
dataset_name,
data_path,
normal_class,
known_outlier_class,
n_known_outlier_classes,
ratio_known_normal,
ratio_known_outlier,
ratio_pollution,
random_state=np.random.RandomState(cfg.settings["seed"]),
inference=True,
)
# Log random sample of known anomaly classes if more than 1 class
if n_known_outlier_classes > 1:
logger.info("Known anomaly classes: %s" % (dataset.known_outlier_classes,))
# Initialize DeepSAD model and set neural network phi
deepSAD = DeepSAD(cfg.settings["eta"])
deepSAD.set_network(net_name)
# If specified, load Deep SAD model (center c, network weights, and possibly autoencoder weights)
if not load_model:
logger.error(
"For inference mode a model has to be loaded! Pass the --load_model option with the model path!"
)
return
deepSAD.load_model(model_path=load_model, load_ae=True, map_location=device)
logger.info("Loading model from %s." % load_model)
inference_results = deepSAD.inference(
dataset, device=device, n_jobs_dataloader=n_jobs_dataloader
)
inference_results_path = (
Path(xp_path) / "inference" / Path(dataset.root).with_suffix(".npy").stem
)
inference_results_path.parent.mkdir(parents=True, exist_ok=True)
np.save(inference_results_path, inference_results, fix_imports=False)
logger.info(
f"Inference: median={np.median(inference_results)} mean={np.mean(inference_results)} min={inference_results.min()} max={inference_results.max()}"
)
else:
logger.error(f"Unknown action: {action}")
if __name__ == "__main__":