implemented inference
This commit is contained in:
@@ -86,6 +86,18 @@ class DeepSAD(object):
|
||||
self.results["train_time"] = self.trainer.train_time
|
||||
self.c = self.trainer.c.cpu().data.numpy().tolist() # get as list
|
||||
|
||||
def inference(
|
||||
self, dataset: BaseADDataset, device: str = "cuda", n_jobs_dataloader: int = 0
|
||||
):
|
||||
"""Tests the Deep SAD model on the test data."""
|
||||
|
||||
if self.trainer is None:
|
||||
self.trainer = DeepSADTrainer(
|
||||
self.c, self.eta, device=device, n_jobs_dataloader=n_jobs_dataloader
|
||||
)
|
||||
|
||||
return self.trainer.infer(dataset, self.net)
|
||||
|
||||
def test(
|
||||
self, dataset: BaseADDataset, device: str = "cuda", n_jobs_dataloader: int = 0
|
||||
):
|
||||
|
||||
@@ -14,19 +14,39 @@ class TorchvisionDataset(BaseADDataset):
|
||||
shuffle_train=True,
|
||||
shuffle_test=False,
|
||||
num_workers: int = 0,
|
||||
) -> (DataLoader, DataLoader):
|
||||
train_loader = DataLoader(
|
||||
) -> (DataLoader, DataLoader, DataLoader):
|
||||
train_loader = (
|
||||
DataLoader(
|
||||
dataset=self.train_set,
|
||||
batch_size=batch_size,
|
||||
shuffle=shuffle_train,
|
||||
num_workers=num_workers,
|
||||
drop_last=True,
|
||||
)
|
||||
test_loader = DataLoader(
|
||||
if self.train_set is not None
|
||||
else None
|
||||
)
|
||||
test_loader = (
|
||||
DataLoader(
|
||||
dataset=self.test_set,
|
||||
batch_size=batch_size,
|
||||
shuffle=shuffle_test,
|
||||
num_workers=num_workers,
|
||||
drop_last=False,
|
||||
)
|
||||
return train_loader, test_loader
|
||||
if self.test_set is not None
|
||||
else None
|
||||
)
|
||||
|
||||
inference_loader = (
|
||||
DataLoader(
|
||||
dataset=self.inference_set,
|
||||
batch_size=batch_size,
|
||||
shuffle=False,
|
||||
num_workers=num_workers,
|
||||
drop_last=False,
|
||||
)
|
||||
if self.inference_set is not None
|
||||
else None
|
||||
)
|
||||
return train_loader, test_loader, inference_loader
|
||||
|
||||
@@ -96,7 +96,9 @@ class IsoForest(object):
|
||||
"""Tests the Isolation Forest model on the test data."""
|
||||
logger = logging.getLogger()
|
||||
|
||||
_, test_loader = dataset.loaders(batch_size=128, num_workers=n_jobs_dataloader)
|
||||
_, test_loader, _ = dataset.loaders(
|
||||
batch_size=128, num_workers=n_jobs_dataloader
|
||||
)
|
||||
|
||||
# Get data from loader
|
||||
idx_label_score = []
|
||||
|
||||
@@ -108,7 +108,9 @@ class KDE(object):
|
||||
"""Tests the Kernel Density Estimation model on the test data."""
|
||||
logger = logging.getLogger()
|
||||
|
||||
_, test_loader = dataset.loaders(batch_size=128, num_workers=n_jobs_dataloader)
|
||||
_, test_loader, _ = dataset.loaders(
|
||||
batch_size=128, num_workers=n_jobs_dataloader
|
||||
)
|
||||
|
||||
# Get data from loader
|
||||
idx_label_score = []
|
||||
|
||||
@@ -77,7 +77,9 @@ class OCSVM(object):
|
||||
best_auc = 0.0
|
||||
|
||||
# Sample hold-out set from test set
|
||||
_, test_loader = dataset.loaders(batch_size=128, num_workers=n_jobs_dataloader)
|
||||
_, test_loader, _ = dataset.loaders(
|
||||
batch_size=128, num_workers=n_jobs_dataloader
|
||||
)
|
||||
|
||||
X_test = ()
|
||||
labels = []
|
||||
@@ -163,7 +165,9 @@ class OCSVM(object):
|
||||
"""Tests the OC-SVM model on the test data."""
|
||||
logger = logging.getLogger()
|
||||
|
||||
_, test_loader = dataset.loaders(batch_size=128, num_workers=n_jobs_dataloader)
|
||||
_, test_loader, _ = dataset.loaders(
|
||||
batch_size=128, num_workers=n_jobs_dataloader
|
||||
)
|
||||
|
||||
# Get data from loader
|
||||
idx_label_score = []
|
||||
|
||||
@@ -91,7 +91,9 @@ class SSAD(object):
|
||||
best_auc = 0.0
|
||||
|
||||
# Sample hold-out set from test set
|
||||
_, test_loader = dataset.loaders(batch_size=128, num_workers=n_jobs_dataloader)
|
||||
_, test_loader, _ = dataset.loaders(
|
||||
batch_size=128, num_workers=n_jobs_dataloader
|
||||
)
|
||||
|
||||
X_test = ()
|
||||
labels = []
|
||||
@@ -190,7 +192,9 @@ class SSAD(object):
|
||||
"""Tests the SSAD model on the test data."""
|
||||
logger = logging.getLogger()
|
||||
|
||||
_, test_loader = dataset.loaders(batch_size=128, num_workers=n_jobs_dataloader)
|
||||
_, test_loader, _ = dataset.loaders(
|
||||
batch_size=128, num_workers=n_jobs_dataloader
|
||||
)
|
||||
|
||||
# Get data from loader
|
||||
idx_label_score = []
|
||||
|
||||
@@ -16,6 +16,7 @@ def load_dataset(
|
||||
ratio_known_outlier: float = 0.0,
|
||||
ratio_pollution: float = 0.0,
|
||||
random_state=None,
|
||||
inference: bool = False,
|
||||
):
|
||||
"""Loads the dataset."""
|
||||
|
||||
@@ -42,6 +43,7 @@ def load_dataset(
|
||||
ratio_known_normal=ratio_known_normal,
|
||||
ratio_known_outlier=ratio_known_outlier,
|
||||
ratio_pollution=ratio_pollution,
|
||||
inference=inference,
|
||||
)
|
||||
|
||||
if dataset_name == "elpv":
|
||||
|
||||
@@ -6,6 +6,7 @@ from base.torchvision_dataset import TorchvisionDataset
|
||||
from .preprocessing import create_semisupervised_setting
|
||||
from typing import Callable, Optional
|
||||
|
||||
import logging
|
||||
import torch
|
||||
import torchvision.transforms as transforms
|
||||
import random
|
||||
@@ -22,6 +23,7 @@ class SubTer_Dataset(TorchvisionDataset):
|
||||
ratio_known_normal: float = 0.0,
|
||||
ratio_known_outlier: float = 0.0,
|
||||
ratio_pollution: float = 0.0,
|
||||
inference: bool = False,
|
||||
):
|
||||
super().__init__(root)
|
||||
|
||||
@@ -35,8 +37,14 @@ class SubTer_Dataset(TorchvisionDataset):
|
||||
transform = transforms.ToTensor()
|
||||
target_transform = transforms.Lambda(lambda x: int(x in self.outlier_classes))
|
||||
|
||||
if inference:
|
||||
self.inference_set = SubTerInference(
|
||||
root=self.root,
|
||||
transform=transform,
|
||||
)
|
||||
else:
|
||||
# Get train set
|
||||
train_set = MySubTer(
|
||||
train_set = SubTerTraining(
|
||||
root=self.root,
|
||||
transform=transform,
|
||||
target_transform=target_transform,
|
||||
@@ -61,7 +69,7 @@ class SubTer_Dataset(TorchvisionDataset):
|
||||
self.train_set = Subset(train_set, idx)
|
||||
|
||||
# Get test set
|
||||
self.test_set = MySubTer(
|
||||
self.test_set = SubTerTraining(
|
||||
root=self.root,
|
||||
train=False,
|
||||
transform=transform,
|
||||
@@ -69,7 +77,7 @@ class SubTer_Dataset(TorchvisionDataset):
|
||||
)
|
||||
|
||||
|
||||
class MySubTer(VisionDataset):
|
||||
class SubTerTraining(VisionDataset):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@@ -81,7 +89,9 @@ class MySubTer(VisionDataset):
|
||||
split=0.7,
|
||||
seed=0,
|
||||
):
|
||||
super(MySubTer, self).__init__(root, transforms, transform, target_transform)
|
||||
super(SubTerTraining, self).__init__(
|
||||
root, transforms, transform, target_transform
|
||||
)
|
||||
|
||||
experiments_data = []
|
||||
experiments_targets = []
|
||||
@@ -153,3 +163,49 @@ class MySubTer(VisionDataset):
|
||||
target = self.target_transform(target)
|
||||
|
||||
return img, target, semi_target, index
|
||||
|
||||
|
||||
class SubTerInference(VisionDataset):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
root: str,
|
||||
transforms: Optional[Callable] = None,
|
||||
transform: Optional[Callable] = None,
|
||||
):
|
||||
super(SubTerInference, self).__init__(root, transforms, transform)
|
||||
logger = logging.getLogger()
|
||||
|
||||
self.experiment_file_path = Path(root)
|
||||
|
||||
if not self.experiment_file_path.is_file():
|
||||
logger.error(
|
||||
"For inference the data path has to be a single experiment file!"
|
||||
)
|
||||
raise Exception("Inference data is not a loadable file!")
|
||||
|
||||
self.data = np.load(self.experiment_file_path)
|
||||
self.data = np.nan_to_num(self.data)
|
||||
self.data = torch.tensor(self.data)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data)
|
||||
|
||||
def __getitem__(self, index):
|
||||
"""Override the original method of the MNIST class.
|
||||
Args:
|
||||
index (int): Index
|
||||
|
||||
Returns:
|
||||
tuple: (image, index)
|
||||
"""
|
||||
img = self.data[index]
|
||||
|
||||
# doing this so that it is consistent with all other datasets
|
||||
# to return a PIL Image
|
||||
img = Image.fromarray(img.numpy(), mode="F")
|
||||
|
||||
if self.transform is not None:
|
||||
img = self.transform(img)
|
||||
|
||||
return img, index
|
||||
|
||||
@@ -3,6 +3,7 @@ import torch
|
||||
import logging
|
||||
import random
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
|
||||
from utils.config import Config
|
||||
from utils.visualization.plot_images_grid import plot_images_grid
|
||||
@@ -14,6 +15,15 @@ from datasets.main import load_dataset
|
||||
# Settings
|
||||
################################################################################
|
||||
@click.command()
|
||||
@click.argument(
|
||||
"action",
|
||||
type=click.Choice(
|
||||
[
|
||||
"train",
|
||||
"infer",
|
||||
]
|
||||
),
|
||||
)
|
||||
@click.argument(
|
||||
"dataset_name",
|
||||
type=click.Choice(
|
||||
@@ -203,6 +213,7 @@ from datasets.main import load_dataset
|
||||
"If > 1, the specified number of outlier classes will be sampled at random.",
|
||||
)
|
||||
def main(
|
||||
action,
|
||||
dataset_name,
|
||||
net_name,
|
||||
xp_path,
|
||||
@@ -303,6 +314,8 @@ def main(
|
||||
logger.info("Number of threads: %d" % num_threads)
|
||||
logger.info("Number of dataloader workers: %d" % n_jobs_dataloader)
|
||||
|
||||
if action == "train":
|
||||
|
||||
# Load data
|
||||
dataset = load_dataset(
|
||||
dataset_name,
|
||||
@@ -339,7 +352,9 @@ def main(
|
||||
% (cfg.settings["ae_lr_milestone"],)
|
||||
)
|
||||
logger.info("Pretraining batch size: %d" % cfg.settings["ae_batch_size"])
|
||||
logger.info("Pretraining weight decay: %g" % cfg.settings["ae_weight_decay"])
|
||||
logger.info(
|
||||
"Pretraining weight decay: %g" % cfg.settings["ae_weight_decay"]
|
||||
)
|
||||
|
||||
# Pretrain model on dataset (via autoencoder)
|
||||
deepSAD.pretrain(
|
||||
@@ -401,10 +416,12 @@ def main(
|
||||
|
||||
if dataset_name in ("mnist", "fmnist", "elpv"):
|
||||
X_all_low = dataset.test_set.data[idx_all_sorted[:32], ...].unsqueeze(1)
|
||||
X_all_high = dataset.test_set.data[idx_all_sorted[-32:], ...].unsqueeze(1)
|
||||
X_normal_low = dataset.test_set.data[idx_normal_sorted[:32], ...].unsqueeze(
|
||||
X_all_high = dataset.test_set.data[idx_all_sorted[-32:], ...].unsqueeze(
|
||||
1
|
||||
)
|
||||
X_normal_low = dataset.test_set.data[
|
||||
idx_normal_sorted[:32], ...
|
||||
].unsqueeze(1)
|
||||
X_normal_high = dataset.test_set.data[
|
||||
idx_normal_sorted[-32:], ...
|
||||
].unsqueeze(1)
|
||||
@@ -427,14 +444,64 @@ def main(
|
||||
)
|
||||
X_normal_high = torch.tensor(
|
||||
np.transpose(
|
||||
dataset.test_set.data[idx_normal_sorted[-32:], ...], (0, 3, 1, 2)
|
||||
dataset.test_set.data[idx_normal_sorted[-32:], ...],
|
||||
(0, 3, 1, 2),
|
||||
)
|
||||
)
|
||||
|
||||
plot_images_grid(X_all_low, export_img=xp_path + "/all_low", padding=2)
|
||||
plot_images_grid(X_all_high, export_img=xp_path + "/all_high", padding=2)
|
||||
plot_images_grid(X_normal_low, export_img=xp_path + "/normals_low", padding=2)
|
||||
plot_images_grid(X_normal_high, export_img=xp_path + "/normals_high", padding=2)
|
||||
plot_images_grid(
|
||||
X_normal_low, export_img=xp_path + "/normals_low", padding=2
|
||||
)
|
||||
plot_images_grid(
|
||||
X_normal_high, export_img=xp_path + "/normals_high", padding=2
|
||||
)
|
||||
elif action == "infer":
|
||||
dataset = load_dataset(
|
||||
dataset_name,
|
||||
data_path,
|
||||
normal_class,
|
||||
known_outlier_class,
|
||||
n_known_outlier_classes,
|
||||
ratio_known_normal,
|
||||
ratio_known_outlier,
|
||||
ratio_pollution,
|
||||
random_state=np.random.RandomState(cfg.settings["seed"]),
|
||||
inference=True,
|
||||
)
|
||||
# Log random sample of known anomaly classes if more than 1 class
|
||||
if n_known_outlier_classes > 1:
|
||||
logger.info("Known anomaly classes: %s" % (dataset.known_outlier_classes,))
|
||||
|
||||
# Initialize DeepSAD model and set neural network phi
|
||||
deepSAD = DeepSAD(cfg.settings["eta"])
|
||||
deepSAD.set_network(net_name)
|
||||
|
||||
# If specified, load Deep SAD model (center c, network weights, and possibly autoencoder weights)
|
||||
if not load_model:
|
||||
logger.error(
|
||||
"For inference mode a model has to be loaded! Pass the --load_model option with the model path!"
|
||||
)
|
||||
return
|
||||
|
||||
deepSAD.load_model(model_path=load_model, load_ae=True, map_location=device)
|
||||
logger.info("Loading model from %s." % load_model)
|
||||
|
||||
inference_results = deepSAD.inference(
|
||||
dataset, device=device, n_jobs_dataloader=n_jobs_dataloader
|
||||
)
|
||||
inference_results_path = (
|
||||
Path(xp_path) / "inference" / Path(dataset.root).with_suffix(".npy").stem
|
||||
)
|
||||
inference_results_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
np.save(inference_results_path, inference_results, fix_imports=False)
|
||||
|
||||
logger.info(
|
||||
f"Inference: median={np.median(inference_results)} mean={np.mean(inference_results)} min={inference_results.min()} max={inference_results.max()}"
|
||||
)
|
||||
else:
|
||||
logger.error(f"Unknown action: {action}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@@ -54,7 +54,7 @@ class DeepSADTrainer(BaseTrainer):
|
||||
logger = logging.getLogger()
|
||||
|
||||
# Get train data loader
|
||||
train_loader, _ = dataset.loaders(
|
||||
train_loader, _, _ = dataset.loaders(
|
||||
batch_size=self.batch_size, num_workers=self.n_jobs_dataloader
|
||||
)
|
||||
|
||||
@@ -130,11 +130,49 @@ class DeepSADTrainer(BaseTrainer):
|
||||
|
||||
return net
|
||||
|
||||
def infer(self, dataset: BaseADDataset, net: BaseNet):
|
||||
logger = logging.getLogger()
|
||||
|
||||
# Get test data loader
|
||||
_, _, inference_loader = dataset.loaders(
|
||||
batch_size=self.batch_size, num_workers=self.n_jobs_dataloader
|
||||
)
|
||||
|
||||
# Set device for network
|
||||
net = net.to(self.device)
|
||||
|
||||
# Testing
|
||||
logger.info("Starting inference...")
|
||||
n_batches = 0
|
||||
start_time = time.time()
|
||||
scores = []
|
||||
net.eval()
|
||||
with torch.no_grad():
|
||||
for data in inference_loader:
|
||||
inputs, idx = data
|
||||
|
||||
inputs = inputs.to(self.device)
|
||||
idx = idx.to(self.device)
|
||||
|
||||
outputs = net(inputs)
|
||||
dist = torch.sum((outputs - self.c) ** 2, dim=1)
|
||||
scores += dist.cpu().data.numpy().tolist()
|
||||
|
||||
n_batches += 1
|
||||
|
||||
self.inference_time = time.time() - start_time
|
||||
|
||||
# Log results
|
||||
logger.info("Inference Time: {:.3f}s".format(self.inference_time))
|
||||
logger.info("Finished inference.")
|
||||
|
||||
return np.array(scores)
|
||||
|
||||
def test(self, dataset: BaseADDataset, net: BaseNet):
|
||||
logger = logging.getLogger()
|
||||
|
||||
# Get test data loader
|
||||
_, test_loader = dataset.loaders(
|
||||
_, test_loader, _ = dataset.loaders(
|
||||
batch_size=self.batch_size, num_workers=self.n_jobs_dataloader
|
||||
)
|
||||
|
||||
|
||||
@@ -49,7 +49,7 @@ class SemiDeepGenerativeTrainer(BaseTrainer):
|
||||
logger = logging.getLogger()
|
||||
|
||||
# Get train data loader
|
||||
train_loader, _ = dataset.loaders(
|
||||
train_loader, _, _ = dataset.loaders(
|
||||
batch_size=self.batch_size, num_workers=self.n_jobs_dataloader
|
||||
)
|
||||
|
||||
@@ -152,7 +152,7 @@ class SemiDeepGenerativeTrainer(BaseTrainer):
|
||||
logger = logging.getLogger()
|
||||
|
||||
# Get test data loader
|
||||
_, test_loader = dataset.loaders(
|
||||
_, test_loader, _ = dataset.loaders(
|
||||
batch_size=self.batch_size, num_workers=self.n_jobs_dataloader
|
||||
)
|
||||
|
||||
|
||||
@@ -44,7 +44,7 @@ class AETrainer(BaseTrainer):
|
||||
logger = logging.getLogger()
|
||||
|
||||
# Get train data loader
|
||||
train_loader, _ = dataset.loaders(
|
||||
train_loader, _, _ = dataset.loaders(
|
||||
batch_size=self.batch_size, num_workers=self.n_jobs_dataloader
|
||||
)
|
||||
|
||||
@@ -115,7 +115,7 @@ class AETrainer(BaseTrainer):
|
||||
logger = logging.getLogger()
|
||||
|
||||
# Get test data loader
|
||||
_, test_loader = dataset.loaders(
|
||||
_, test_loader, _ = dataset.loaders(
|
||||
batch_size=self.batch_size, num_workers=self.n_jobs_dataloader
|
||||
)
|
||||
|
||||
|
||||
@@ -44,7 +44,7 @@ class VAETrainer(BaseTrainer):
|
||||
logger = logging.getLogger()
|
||||
|
||||
# Get train data loader
|
||||
train_loader, _ = dataset.loaders(
|
||||
train_loader, _, _ = dataset.loaders(
|
||||
batch_size=self.batch_size, num_workers=self.n_jobs_dataloader
|
||||
)
|
||||
|
||||
@@ -117,7 +117,7 @@ class VAETrainer(BaseTrainer):
|
||||
logger = logging.getLogger()
|
||||
|
||||
# Get test data loader
|
||||
_, test_loader = dataset.loaders(
|
||||
_, test_loader, _ = dataset.loaders(
|
||||
batch_size=self.batch_size, num_workers=self.n_jobs_dataloader
|
||||
)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user