black formatted files before changes
This commit is contained in:
@@ -10,15 +10,24 @@ class BaseADDataset(ABC):
|
||||
self.root = root # root path to data
|
||||
|
||||
self.n_classes = 2 # 0: normal, 1: outlier
|
||||
self.normal_classes = None # tuple with original class labels that define the normal class
|
||||
self.outlier_classes = None # tuple with original class labels that define the outlier class
|
||||
self.normal_classes = (
|
||||
None # tuple with original class labels that define the normal class
|
||||
)
|
||||
self.outlier_classes = (
|
||||
None # tuple with original class labels that define the outlier class
|
||||
)
|
||||
|
||||
self.train_set = None # must be of type torch.utils.data.Dataset
|
||||
self.test_set = None # must be of type torch.utils.data.Dataset
|
||||
|
||||
@abstractmethod
|
||||
def loaders(self, batch_size: int, shuffle_train=True, shuffle_test=False, num_workers: int = 0) -> (
|
||||
DataLoader, DataLoader):
|
||||
def loaders(
|
||||
self,
|
||||
batch_size: int,
|
||||
shuffle_train=True,
|
||||
shuffle_test=False,
|
||||
num_workers: int = 0,
|
||||
) -> (DataLoader, DataLoader):
|
||||
"""Implement data loaders of type torch.utils.data.DataLoader for train_set and test_set."""
|
||||
pass
|
||||
|
||||
|
||||
@@ -22,5 +22,5 @@ class BaseNet(nn.Module):
|
||||
"""Network summary."""
|
||||
net_parameters = filter(lambda p: p.requires_grad, self.parameters())
|
||||
params = sum([np.prod(p.size()) for p in net_parameters])
|
||||
self.logger.info('Trainable parameters: {}'.format(params))
|
||||
self.logger.info("Trainable parameters: {}".format(params))
|
||||
self.logger.info(self)
|
||||
|
||||
@@ -6,8 +6,17 @@ from .base_net import BaseNet
|
||||
class BaseTrainer(ABC):
|
||||
"""Trainer base class."""
|
||||
|
||||
def __init__(self, optimizer_name: str, lr: float, n_epochs: int, lr_milestones: tuple, batch_size: int,
|
||||
weight_decay: float, device: str, n_jobs_dataloader: int):
|
||||
def __init__(
|
||||
self,
|
||||
optimizer_name: str,
|
||||
lr: float,
|
||||
n_epochs: int,
|
||||
lr_milestones: tuple,
|
||||
batch_size: int,
|
||||
weight_decay: float,
|
||||
device: str,
|
||||
n_jobs_dataloader: int,
|
||||
):
|
||||
super().__init__()
|
||||
self.optimizer_name = optimizer_name
|
||||
self.lr = lr
|
||||
|
||||
@@ -19,15 +19,22 @@ class ODDSDataset(Dataset):
|
||||
"""
|
||||
|
||||
urls = {
|
||||
'arrhythmia': 'https://www.dropbox.com/s/lmlwuspn1sey48r/arrhythmia.mat?dl=1',
|
||||
'cardio': 'https://www.dropbox.com/s/galg3ihvxklf0qi/cardio.mat?dl=1',
|
||||
'satellite': 'https://www.dropbox.com/s/dpzxp8jyr9h93k5/satellite.mat?dl=1',
|
||||
'satimage-2': 'https://www.dropbox.com/s/hckgvu9m6fs441p/satimage-2.mat?dl=1',
|
||||
'shuttle': 'https://www.dropbox.com/s/mk8ozgisimfn3dw/shuttle.mat?dl=1',
|
||||
'thyroid': 'https://www.dropbox.com/s/bih0e15a0fukftb/thyroid.mat?dl=1'
|
||||
"arrhythmia": "https://www.dropbox.com/s/lmlwuspn1sey48r/arrhythmia.mat?dl=1",
|
||||
"cardio": "https://www.dropbox.com/s/galg3ihvxklf0qi/cardio.mat?dl=1",
|
||||
"satellite": "https://www.dropbox.com/s/dpzxp8jyr9h93k5/satellite.mat?dl=1",
|
||||
"satimage-2": "https://www.dropbox.com/s/hckgvu9m6fs441p/satimage-2.mat?dl=1",
|
||||
"shuttle": "https://www.dropbox.com/s/mk8ozgisimfn3dw/shuttle.mat?dl=1",
|
||||
"thyroid": "https://www.dropbox.com/s/bih0e15a0fukftb/thyroid.mat?dl=1",
|
||||
}
|
||||
|
||||
def __init__(self, root: str, dataset_name: str, train=True, random_state=None, download=False):
|
||||
def __init__(
|
||||
self,
|
||||
root: str,
|
||||
dataset_name: str,
|
||||
train=True,
|
||||
random_state=None,
|
||||
download=False,
|
||||
):
|
||||
super(Dataset, self).__init__()
|
||||
|
||||
self.classes = [0, 1]
|
||||
@@ -37,25 +44,25 @@ class ODDSDataset(Dataset):
|
||||
self.root = Path(root)
|
||||
self.dataset_name = dataset_name
|
||||
self.train = train # training set or test set
|
||||
self.file_name = self.dataset_name + '.mat'
|
||||
self.file_name = self.dataset_name + ".mat"
|
||||
self.data_file = self.root / self.file_name
|
||||
|
||||
if download:
|
||||
self.download()
|
||||
|
||||
mat = loadmat(self.data_file)
|
||||
X = mat['X']
|
||||
y = mat['y'].ravel()
|
||||
X = mat["X"]
|
||||
y = mat["y"].ravel()
|
||||
idx_norm = y == 0
|
||||
idx_out = y == 1
|
||||
|
||||
# 60% data for training and 40% for testing; keep outlier ratio
|
||||
X_train_norm, X_test_norm, y_train_norm, y_test_norm = train_test_split(X[idx_norm], y[idx_norm],
|
||||
test_size=0.4,
|
||||
random_state=random_state)
|
||||
X_train_out, X_test_out, y_train_out, y_test_out = train_test_split(X[idx_out], y[idx_out],
|
||||
test_size=0.4,
|
||||
random_state=random_state)
|
||||
X_train_norm, X_test_norm, y_train_norm, y_test_norm = train_test_split(
|
||||
X[idx_norm], y[idx_norm], test_size=0.4, random_state=random_state
|
||||
)
|
||||
X_train_out, X_test_out, y_train_out, y_test_out = train_test_split(
|
||||
X[idx_out], y[idx_out], test_size=0.4, random_state=random_state
|
||||
)
|
||||
X_train = np.concatenate((X_train_norm, X_train_out))
|
||||
X_test = np.concatenate((X_test_norm, X_test_out))
|
||||
y_train = np.concatenate((y_train_norm, y_train_out))
|
||||
@@ -88,7 +95,11 @@ class ODDSDataset(Dataset):
|
||||
Returns:
|
||||
tuple: (sample, target, semi_target, index)
|
||||
"""
|
||||
sample, target, semi_target = self.data[index], int(self.targets[index]), int(self.semi_targets[index])
|
||||
sample, target, semi_target = (
|
||||
self.data[index],
|
||||
int(self.targets[index]),
|
||||
int(self.semi_targets[index]),
|
||||
)
|
||||
|
||||
return sample, target, semi_target, index
|
||||
|
||||
@@ -107,4 +118,4 @@ class ODDSDataset(Dataset):
|
||||
# download file
|
||||
download_url(self.urls[self.dataset_name], self.root, self.file_name)
|
||||
|
||||
print('Done!')
|
||||
print("Done!")
|
||||
|
||||
@@ -8,10 +8,25 @@ class TorchvisionDataset(BaseADDataset):
|
||||
def __init__(self, root: str):
|
||||
super().__init__(root)
|
||||
|
||||
def loaders(self, batch_size: int, shuffle_train=True, shuffle_test=False, num_workers: int = 0) -> (
|
||||
DataLoader, DataLoader):
|
||||
train_loader = DataLoader(dataset=self.train_set, batch_size=batch_size, shuffle=shuffle_train,
|
||||
num_workers=num_workers, drop_last=True)
|
||||
test_loader = DataLoader(dataset=self.test_set, batch_size=batch_size, shuffle=shuffle_test,
|
||||
num_workers=num_workers, drop_last=False)
|
||||
def loaders(
|
||||
self,
|
||||
batch_size: int,
|
||||
shuffle_train=True,
|
||||
shuffle_test=False,
|
||||
num_workers: int = 0,
|
||||
) -> (DataLoader, DataLoader):
|
||||
train_loader = DataLoader(
|
||||
dataset=self.train_set,
|
||||
batch_size=batch_size,
|
||||
shuffle=shuffle_train,
|
||||
num_workers=num_workers,
|
||||
drop_last=True,
|
||||
)
|
||||
test_loader = DataLoader(
|
||||
dataset=self.test_set,
|
||||
batch_size=batch_size,
|
||||
shuffle=shuffle_test,
|
||||
num_workers=num_workers,
|
||||
drop_last=False,
|
||||
)
|
||||
return train_loader, test_loader
|
||||
|
||||
Reference in New Issue
Block a user