black formatted files before changes
This commit is contained in:
@@ -14,44 +14,133 @@ from datasets.main import load_dataset
|
||||
# Settings
|
||||
################################################################################
|
||||
@click.command()
|
||||
@click.argument('dataset_name', type=click.Choice(['mnist', 'fmnist', 'cifar10', 'arrhythmia', 'cardio', 'satellite',
|
||||
'satimage-2', 'shuttle', 'thyroid']))
|
||||
@click.argument('xp_path', type=click.Path(exists=True))
|
||||
@click.argument('data_path', type=click.Path(exists=True))
|
||||
@click.option('--load_config', type=click.Path(exists=True), default=None,
|
||||
help='Config JSON-file path (default: None).')
|
||||
@click.option('--load_model', type=click.Path(exists=True), default=None,
|
||||
help='Model file path (default: None).')
|
||||
@click.option('--ratio_known_normal', type=float, default=0.0,
|
||||
help='Ratio of known (labeled) normal training examples.')
|
||||
@click.option('--ratio_known_outlier', type=float, default=0.0,
|
||||
help='Ratio of known (labeled) anomalous training examples.')
|
||||
@click.option('--ratio_pollution', type=float, default=0.0,
|
||||
help='Pollution ratio of unlabeled training data with unknown (unlabeled) anomalies.')
|
||||
@click.option('--seed', type=int, default=-1, help='Set seed. If -1, use randomization.')
|
||||
@click.option('--kernel', type=click.Choice(['gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear', 'cosine']),
|
||||
default='gaussian', help='Kernel for the KDE')
|
||||
@click.option('--grid_search_cv', type=bool, default=True,
|
||||
help='Use sklearn GridSearchCV to determine optimal bandwidth')
|
||||
@click.option('--n_jobs_model', type=int, default=-1, help='Number of jobs for model training.')
|
||||
@click.option('--hybrid', type=bool, default=False,
|
||||
help='Train KDE on features extracted from an autoencoder. If True, load_ae must be specified.')
|
||||
@click.option('--load_ae', type=click.Path(exists=True), default=None,
|
||||
help='Model file path to load autoencoder weights (default: None).')
|
||||
@click.option('--n_jobs_dataloader', type=int, default=0,
|
||||
help='Number of workers for data loading. 0 means that the data will be loaded in the main process.')
|
||||
@click.option('--normal_class', type=int, default=0,
|
||||
help='Specify the normal class of the dataset (all other classes are considered anomalous).')
|
||||
@click.option('--known_outlier_class', type=int, default=1,
|
||||
help='Specify the known outlier class of the dataset for semi-supervised anomaly detection.')
|
||||
@click.option('--n_known_outlier_classes', type=int, default=0,
|
||||
help='Number of known outlier classes.'
|
||||
'If 0, no anomalies are known.'
|
||||
'If 1, outlier class as specified in --known_outlier_class option.'
|
||||
'If > 1, the specified number of outlier classes will be sampled at random.')
|
||||
def main(dataset_name, xp_path, data_path, load_config, load_model, ratio_known_normal, ratio_known_outlier,
|
||||
ratio_pollution, seed, kernel, grid_search_cv, n_jobs_model, hybrid, load_ae, n_jobs_dataloader, normal_class,
|
||||
known_outlier_class, n_known_outlier_classes):
|
||||
@click.argument(
|
||||
"dataset_name",
|
||||
type=click.Choice(
|
||||
[
|
||||
"mnist",
|
||||
"fmnist",
|
||||
"cifar10",
|
||||
"arrhythmia",
|
||||
"cardio",
|
||||
"satellite",
|
||||
"satimage-2",
|
||||
"shuttle",
|
||||
"thyroid",
|
||||
]
|
||||
),
|
||||
)
|
||||
@click.argument("xp_path", type=click.Path(exists=True))
|
||||
@click.argument("data_path", type=click.Path(exists=True))
|
||||
@click.option(
|
||||
"--load_config",
|
||||
type=click.Path(exists=True),
|
||||
default=None,
|
||||
help="Config JSON-file path (default: None).",
|
||||
)
|
||||
@click.option(
|
||||
"--load_model",
|
||||
type=click.Path(exists=True),
|
||||
default=None,
|
||||
help="Model file path (default: None).",
|
||||
)
|
||||
@click.option(
|
||||
"--ratio_known_normal",
|
||||
type=float,
|
||||
default=0.0,
|
||||
help="Ratio of known (labeled) normal training examples.",
|
||||
)
|
||||
@click.option(
|
||||
"--ratio_known_outlier",
|
||||
type=float,
|
||||
default=0.0,
|
||||
help="Ratio of known (labeled) anomalous training examples.",
|
||||
)
|
||||
@click.option(
|
||||
"--ratio_pollution",
|
||||
type=float,
|
||||
default=0.0,
|
||||
help="Pollution ratio of unlabeled training data with unknown (unlabeled) anomalies.",
|
||||
)
|
||||
@click.option(
|
||||
"--seed", type=int, default=-1, help="Set seed. If -1, use randomization."
|
||||
)
|
||||
@click.option(
|
||||
"--kernel",
|
||||
type=click.Choice(
|
||||
["gaussian", "tophat", "epanechnikov", "exponential", "linear", "cosine"]
|
||||
),
|
||||
default="gaussian",
|
||||
help="Kernel for the KDE",
|
||||
)
|
||||
@click.option(
|
||||
"--grid_search_cv",
|
||||
type=bool,
|
||||
default=True,
|
||||
help="Use sklearn GridSearchCV to determine optimal bandwidth",
|
||||
)
|
||||
@click.option(
|
||||
"--n_jobs_model", type=int, default=-1, help="Number of jobs for model training."
|
||||
)
|
||||
@click.option(
|
||||
"--hybrid",
|
||||
type=bool,
|
||||
default=False,
|
||||
help="Train KDE on features extracted from an autoencoder. If True, load_ae must be specified.",
|
||||
)
|
||||
@click.option(
|
||||
"--load_ae",
|
||||
type=click.Path(exists=True),
|
||||
default=None,
|
||||
help="Model file path to load autoencoder weights (default: None).",
|
||||
)
|
||||
@click.option(
|
||||
"--n_jobs_dataloader",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Number of workers for data loading. 0 means that the data will be loaded in the main process.",
|
||||
)
|
||||
@click.option(
|
||||
"--normal_class",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Specify the normal class of the dataset (all other classes are considered anomalous).",
|
||||
)
|
||||
@click.option(
|
||||
"--known_outlier_class",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Specify the known outlier class of the dataset for semi-supervised anomaly detection.",
|
||||
)
|
||||
@click.option(
|
||||
"--n_known_outlier_classes",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Number of known outlier classes."
|
||||
"If 0, no anomalies are known."
|
||||
"If 1, outlier class as specified in --known_outlier_class option."
|
||||
"If > 1, the specified number of outlier classes will be sampled at random.",
|
||||
)
|
||||
def main(
|
||||
dataset_name,
|
||||
xp_path,
|
||||
data_path,
|
||||
load_config,
|
||||
load_model,
|
||||
ratio_known_normal,
|
||||
ratio_known_outlier,
|
||||
ratio_pollution,
|
||||
seed,
|
||||
kernel,
|
||||
grid_search_cv,
|
||||
n_jobs_model,
|
||||
hybrid,
|
||||
load_ae,
|
||||
n_jobs_dataloader,
|
||||
normal_class,
|
||||
known_outlier_class,
|
||||
n_known_outlier_classes,
|
||||
):
|
||||
"""
|
||||
(Hybrid) KDE for anomaly detection.
|
||||
|
||||
@@ -67,114 +156,157 @@ def main(dataset_name, xp_path, data_path, load_config, load_model, ratio_known_
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
logger = logging.getLogger()
|
||||
logger.setLevel(logging.INFO)
|
||||
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
||||
log_file = xp_path + '/log.txt'
|
||||
formatter = logging.Formatter(
|
||||
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
||||
)
|
||||
log_file = xp_path + "/log.txt"
|
||||
file_handler = logging.FileHandler(log_file)
|
||||
file_handler.setLevel(logging.INFO)
|
||||
file_handler.setFormatter(formatter)
|
||||
logger.addHandler(file_handler)
|
||||
|
||||
# Print paths
|
||||
logger.info('Log file is %s.' % log_file)
|
||||
logger.info('Data path is %s.' % data_path)
|
||||
logger.info('Export path is %s.' % xp_path)
|
||||
logger.info("Log file is %s." % log_file)
|
||||
logger.info("Data path is %s." % data_path)
|
||||
logger.info("Export path is %s." % xp_path)
|
||||
|
||||
# Print experimental setup
|
||||
logger.info('Dataset: %s' % dataset_name)
|
||||
logger.info('Normal class: %d' % normal_class)
|
||||
logger.info('Ratio of labeled normal train samples: %.2f' % ratio_known_normal)
|
||||
logger.info('Ratio of labeled anomalous samples: %.2f' % ratio_known_outlier)
|
||||
logger.info('Pollution ratio of unlabeled train data: %.2f' % ratio_pollution)
|
||||
logger.info("Dataset: %s" % dataset_name)
|
||||
logger.info("Normal class: %d" % normal_class)
|
||||
logger.info("Ratio of labeled normal train samples: %.2f" % ratio_known_normal)
|
||||
logger.info("Ratio of labeled anomalous samples: %.2f" % ratio_known_outlier)
|
||||
logger.info("Pollution ratio of unlabeled train data: %.2f" % ratio_pollution)
|
||||
if n_known_outlier_classes == 1:
|
||||
logger.info('Known anomaly class: %d' % known_outlier_class)
|
||||
logger.info("Known anomaly class: %d" % known_outlier_class)
|
||||
else:
|
||||
logger.info('Number of known anomaly classes: %d' % n_known_outlier_classes)
|
||||
logger.info("Number of known anomaly classes: %d" % n_known_outlier_classes)
|
||||
|
||||
# If specified, load experiment config from JSON-file
|
||||
if load_config:
|
||||
cfg.load_config(import_json=load_config)
|
||||
logger.info('Loaded configuration from %s.' % load_config)
|
||||
logger.info("Loaded configuration from %s." % load_config)
|
||||
|
||||
# Print KDE configuration
|
||||
logger.info('KDE kernel: %s' % cfg.settings['kernel'])
|
||||
logger.info('Use GridSearchCV for bandwidth selection: %s' % cfg.settings['grid_search_cv'])
|
||||
logger.info('Number of jobs for model training: %d' % n_jobs_model)
|
||||
logger.info('Hybrid model: %s' % cfg.settings['hybrid'])
|
||||
logger.info("KDE kernel: %s" % cfg.settings["kernel"])
|
||||
logger.info(
|
||||
"Use GridSearchCV for bandwidth selection: %s" % cfg.settings["grid_search_cv"]
|
||||
)
|
||||
logger.info("Number of jobs for model training: %d" % n_jobs_model)
|
||||
logger.info("Hybrid model: %s" % cfg.settings["hybrid"])
|
||||
|
||||
# Set seed
|
||||
if cfg.settings['seed'] != -1:
|
||||
random.seed(cfg.settings['seed'])
|
||||
np.random.seed(cfg.settings['seed'])
|
||||
torch.manual_seed(cfg.settings['seed'])
|
||||
torch.cuda.manual_seed(cfg.settings['seed'])
|
||||
if cfg.settings["seed"] != -1:
|
||||
random.seed(cfg.settings["seed"])
|
||||
np.random.seed(cfg.settings["seed"])
|
||||
torch.manual_seed(cfg.settings["seed"])
|
||||
torch.cuda.manual_seed(cfg.settings["seed"])
|
||||
torch.backends.cudnn.deterministic = True
|
||||
logger.info('Set seed to %d.' % cfg.settings['seed'])
|
||||
logger.info("Set seed to %d." % cfg.settings["seed"])
|
||||
|
||||
# Use 'cpu' as device for KDE
|
||||
device = 'cpu'
|
||||
torch.multiprocessing.set_sharing_strategy('file_system') # fix multiprocessing issue for ubuntu
|
||||
logger.info('Computation device: %s' % device)
|
||||
logger.info('Number of dataloader workers: %d' % n_jobs_dataloader)
|
||||
device = "cpu"
|
||||
torch.multiprocessing.set_sharing_strategy(
|
||||
"file_system"
|
||||
) # fix multiprocessing issue for ubuntu
|
||||
logger.info("Computation device: %s" % device)
|
||||
logger.info("Number of dataloader workers: %d" % n_jobs_dataloader)
|
||||
|
||||
# Load data
|
||||
dataset = load_dataset(dataset_name, data_path, normal_class, known_outlier_class, n_known_outlier_classes,
|
||||
ratio_known_normal, ratio_known_outlier, ratio_pollution,
|
||||
random_state=np.random.RandomState(cfg.settings['seed']))
|
||||
dataset = load_dataset(
|
||||
dataset_name,
|
||||
data_path,
|
||||
normal_class,
|
||||
known_outlier_class,
|
||||
n_known_outlier_classes,
|
||||
ratio_known_normal,
|
||||
ratio_known_outlier,
|
||||
ratio_pollution,
|
||||
random_state=np.random.RandomState(cfg.settings["seed"]),
|
||||
)
|
||||
# Log random sample of known anomaly classes if more than 1 class
|
||||
if n_known_outlier_classes > 1:
|
||||
logger.info('Known anomaly classes: %s' % (dataset.known_outlier_classes,))
|
||||
logger.info("Known anomaly classes: %s" % (dataset.known_outlier_classes,))
|
||||
|
||||
# Initialize KDE model
|
||||
kde = KDE(hybrid=cfg.settings['hybrid'], kernel=cfg.settings['kernel'], n_jobs=n_jobs_model,
|
||||
seed=cfg.settings['seed'])
|
||||
kde = KDE(
|
||||
hybrid=cfg.settings["hybrid"],
|
||||
kernel=cfg.settings["kernel"],
|
||||
n_jobs=n_jobs_model,
|
||||
seed=cfg.settings["seed"],
|
||||
)
|
||||
|
||||
# If specified, load model parameters from already trained model
|
||||
if load_model:
|
||||
kde.load_model(import_path=load_model, device=device)
|
||||
logger.info('Loading model from %s.' % load_model)
|
||||
logger.info("Loading model from %s." % load_model)
|
||||
|
||||
# If specified, load model autoencoder weights for a hybrid approach
|
||||
if hybrid and load_ae is not None:
|
||||
kde.load_ae(dataset_name, model_path=load_ae)
|
||||
logger.info('Loaded pretrained autoencoder for features from %s.' % load_ae)
|
||||
logger.info("Loaded pretrained autoencoder for features from %s." % load_ae)
|
||||
|
||||
# Train model on dataset
|
||||
kde.train(dataset, device=device, n_jobs_dataloader=n_jobs_dataloader,
|
||||
bandwidth_GridSearchCV=cfg.settings['grid_search_cv'])
|
||||
kde.train(
|
||||
dataset,
|
||||
device=device,
|
||||
n_jobs_dataloader=n_jobs_dataloader,
|
||||
bandwidth_GridSearchCV=cfg.settings["grid_search_cv"],
|
||||
)
|
||||
|
||||
# Test model
|
||||
kde.test(dataset, device=device, n_jobs_dataloader=n_jobs_dataloader)
|
||||
|
||||
# Save results and configuration
|
||||
kde.save_results(export_json=xp_path + '/results.json')
|
||||
cfg.save_config(export_json=xp_path + '/config.json')
|
||||
kde.save_results(export_json=xp_path + "/results.json")
|
||||
cfg.save_config(export_json=xp_path + "/config.json")
|
||||
|
||||
# Plot most anomalous and most normal test samples
|
||||
indices, labels, scores = zip(*kde.results['test_scores'])
|
||||
indices, labels, scores = zip(*kde.results["test_scores"])
|
||||
indices, labels, scores = np.array(indices), np.array(labels), np.array(scores)
|
||||
idx_all_sorted = indices[np.argsort(scores)] # from lowest to highest score
|
||||
idx_normal_sorted = indices[labels == 0][np.argsort(scores[labels == 0])] # from lowest to highest score
|
||||
idx_normal_sorted = indices[labels == 0][
|
||||
np.argsort(scores[labels == 0])
|
||||
] # from lowest to highest score
|
||||
|
||||
if dataset_name in ('mnist', 'fmnist', 'cifar10'):
|
||||
if dataset_name in ("mnist", "fmnist", "cifar10"):
|
||||
|
||||
if dataset_name in ('mnist', 'fmnist'):
|
||||
if dataset_name in ("mnist", "fmnist"):
|
||||
X_all_low = dataset.test_set.data[idx_all_sorted[:32], ...].unsqueeze(1)
|
||||
X_all_high = dataset.test_set.data[idx_all_sorted[-32:], ...].unsqueeze(1)
|
||||
X_normal_low = dataset.test_set.data[idx_normal_sorted[:32], ...].unsqueeze(1)
|
||||
X_normal_high = dataset.test_set.data[idx_normal_sorted[-32:], ...].unsqueeze(1)
|
||||
X_normal_low = dataset.test_set.data[idx_normal_sorted[:32], ...].unsqueeze(
|
||||
1
|
||||
)
|
||||
X_normal_high = dataset.test_set.data[
|
||||
idx_normal_sorted[-32:], ...
|
||||
].unsqueeze(1)
|
||||
|
||||
if dataset_name == 'cifar10':
|
||||
X_all_low = torch.tensor(np.transpose(dataset.test_set.data[idx_all_sorted[:32], ...], (0, 3, 1, 2)))
|
||||
X_all_high = torch.tensor(np.transpose(dataset.test_set.data[idx_all_sorted[-32:], ...], (0, 3, 1, 2)))
|
||||
X_normal_low = torch.tensor(np.transpose(dataset.test_set.data[idx_normal_sorted[:32], ...], (0, 3, 1, 2)))
|
||||
if dataset_name == "cifar10":
|
||||
X_all_low = torch.tensor(
|
||||
np.transpose(
|
||||
dataset.test_set.data[idx_all_sorted[:32], ...], (0, 3, 1, 2)
|
||||
)
|
||||
)
|
||||
X_all_high = torch.tensor(
|
||||
np.transpose(
|
||||
dataset.test_set.data[idx_all_sorted[-32:], ...], (0, 3, 1, 2)
|
||||
)
|
||||
)
|
||||
X_normal_low = torch.tensor(
|
||||
np.transpose(
|
||||
dataset.test_set.data[idx_normal_sorted[:32], ...], (0, 3, 1, 2)
|
||||
)
|
||||
)
|
||||
X_normal_high = torch.tensor(
|
||||
np.transpose(dataset.test_set.data[idx_normal_sorted[-32:], ...], (0, 3, 1, 2)))
|
||||
np.transpose(
|
||||
dataset.test_set.data[idx_normal_sorted[-32:], ...], (0, 3, 1, 2)
|
||||
)
|
||||
)
|
||||
|
||||
plot_images_grid(X_all_low, export_img=xp_path + '/all_low', padding=2)
|
||||
plot_images_grid(X_all_high, export_img=xp_path + '/all_high', padding=2)
|
||||
plot_images_grid(X_normal_low, export_img=xp_path + '/normals_low', padding=2)
|
||||
plot_images_grid(X_normal_high, export_img=xp_path + '/normals_high', padding=2)
|
||||
plot_images_grid(X_all_low, export_img=xp_path + "/all_low", padding=2)
|
||||
plot_images_grid(X_all_high, export_img=xp_path + "/all_high", padding=2)
|
||||
plot_images_grid(X_normal_low, export_img=xp_path + "/normals_low", padding=2)
|
||||
plot_images_grid(X_normal_high, export_img=xp_path + "/normals_high", padding=2)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
Reference in New Issue
Block a user