black formatted files before changes
This commit is contained in:
@@ -36,17 +36,13 @@ class SemiDeepGenerativeModel(object):
|
||||
self.vae_optimizer_name = None
|
||||
|
||||
self.results = {
|
||||
'train_time': None,
|
||||
'test_auc': None,
|
||||
'test_time': None,
|
||||
'test_scores': None,
|
||||
"train_time": None,
|
||||
"test_auc": None,
|
||||
"test_time": None,
|
||||
"test_scores": None,
|
||||
}
|
||||
|
||||
self.vae_results = {
|
||||
'train_time': None,
|
||||
'test_auc': None,
|
||||
'test_time': None
|
||||
}
|
||||
self.vae_results = {"train_time": None, "test_auc": None, "test_time": None}
|
||||
|
||||
def set_vae(self, net_name):
|
||||
"""Builds the variational autoencoder network for pretraining."""
|
||||
@@ -58,71 +54,106 @@ class SemiDeepGenerativeModel(object):
|
||||
self.net_name = net_name
|
||||
self.net = build_network(net_name, ae_net=self.vae_net) # full M1+M2 model
|
||||
|
||||
def train(self, dataset: BaseADDataset, optimizer_name: str = 'adam', lr: float = 0.001, n_epochs: int = 50,
|
||||
lr_milestones: tuple = (), batch_size: int = 128, weight_decay: float = 1e-6, device: str = 'cuda',
|
||||
n_jobs_dataloader: int = 0):
|
||||
def train(
|
||||
self,
|
||||
dataset: BaseADDataset,
|
||||
optimizer_name: str = "adam",
|
||||
lr: float = 0.001,
|
||||
n_epochs: int = 50,
|
||||
lr_milestones: tuple = (),
|
||||
batch_size: int = 128,
|
||||
weight_decay: float = 1e-6,
|
||||
device: str = "cuda",
|
||||
n_jobs_dataloader: int = 0,
|
||||
):
|
||||
"""Trains the Semi-Supervised Deep Generative model on the training data."""
|
||||
|
||||
self.optimizer_name = optimizer_name
|
||||
|
||||
self.trainer = SemiDeepGenerativeTrainer(alpha=self.alpha, optimizer_name=optimizer_name, lr=lr,
|
||||
n_epochs=n_epochs, lr_milestones=lr_milestones, batch_size=batch_size,
|
||||
weight_decay=weight_decay, device=device,
|
||||
n_jobs_dataloader=n_jobs_dataloader)
|
||||
self.trainer = SemiDeepGenerativeTrainer(
|
||||
alpha=self.alpha,
|
||||
optimizer_name=optimizer_name,
|
||||
lr=lr,
|
||||
n_epochs=n_epochs,
|
||||
lr_milestones=lr_milestones,
|
||||
batch_size=batch_size,
|
||||
weight_decay=weight_decay,
|
||||
device=device,
|
||||
n_jobs_dataloader=n_jobs_dataloader,
|
||||
)
|
||||
self.net = self.trainer.train(dataset, self.net)
|
||||
self.results['train_time'] = self.trainer.train_time
|
||||
self.results["train_time"] = self.trainer.train_time
|
||||
|
||||
def test(self, dataset: BaseADDataset, device: str = 'cuda', n_jobs_dataloader: int = 0):
|
||||
def test(
|
||||
self, dataset: BaseADDataset, device: str = "cuda", n_jobs_dataloader: int = 0
|
||||
):
|
||||
"""Tests the Semi-Supervised Deep Generative model on the test data."""
|
||||
|
||||
if self.trainer is None:
|
||||
self.trainer = SemiDeepGenerativeTrainer(alpha=self.alpha, device=device,
|
||||
n_jobs_dataloader=n_jobs_dataloader)
|
||||
self.trainer = SemiDeepGenerativeTrainer(
|
||||
alpha=self.alpha, device=device, n_jobs_dataloader=n_jobs_dataloader
|
||||
)
|
||||
|
||||
self.trainer.test(dataset, self.net)
|
||||
# Get results
|
||||
self.results['test_auc'] = self.trainer.test_auc
|
||||
self.results['test_time'] = self.trainer.test_time
|
||||
self.results['test_scores'] = self.trainer.test_scores
|
||||
self.results["test_auc"] = self.trainer.test_auc
|
||||
self.results["test_time"] = self.trainer.test_time
|
||||
self.results["test_scores"] = self.trainer.test_scores
|
||||
|
||||
def pretrain(self, dataset: BaseADDataset, optimizer_name: str = 'adam', lr: float = 0.001, n_epochs: int = 100,
|
||||
lr_milestones: tuple = (), batch_size: int = 128, weight_decay: float = 1e-6, device: str = 'cuda',
|
||||
n_jobs_dataloader: int = 0):
|
||||
def pretrain(
|
||||
self,
|
||||
dataset: BaseADDataset,
|
||||
optimizer_name: str = "adam",
|
||||
lr: float = 0.001,
|
||||
n_epochs: int = 100,
|
||||
lr_milestones: tuple = (),
|
||||
batch_size: int = 128,
|
||||
weight_decay: float = 1e-6,
|
||||
device: str = "cuda",
|
||||
n_jobs_dataloader: int = 0,
|
||||
):
|
||||
"""Pretrains a variational autoencoder (M1) for the Semi-Supervised Deep Generative model."""
|
||||
|
||||
# Train
|
||||
self.vae_optimizer_name = optimizer_name
|
||||
self.vae_trainer = VAETrainer(optimizer_name=optimizer_name, lr=lr, n_epochs=n_epochs,
|
||||
lr_milestones=lr_milestones, batch_size=batch_size, weight_decay=weight_decay,
|
||||
device=device, n_jobs_dataloader=n_jobs_dataloader)
|
||||
self.vae_trainer = VAETrainer(
|
||||
optimizer_name=optimizer_name,
|
||||
lr=lr,
|
||||
n_epochs=n_epochs,
|
||||
lr_milestones=lr_milestones,
|
||||
batch_size=batch_size,
|
||||
weight_decay=weight_decay,
|
||||
device=device,
|
||||
n_jobs_dataloader=n_jobs_dataloader,
|
||||
)
|
||||
self.vae_net = self.vae_trainer.train(dataset, self.vae_net)
|
||||
# Get train results
|
||||
self.vae_results['train_time'] = self.vae_trainer.train_time
|
||||
self.vae_results["train_time"] = self.vae_trainer.train_time
|
||||
|
||||
# Test
|
||||
self.vae_trainer.test(dataset, self.vae_net)
|
||||
# Get test results
|
||||
self.vae_results['test_auc'] = self.vae_trainer.test_auc
|
||||
self.vae_results['test_time'] = self.vae_trainer.test_time
|
||||
self.vae_results["test_auc"] = self.vae_trainer.test_auc
|
||||
self.vae_results["test_time"] = self.vae_trainer.test_time
|
||||
|
||||
def save_model(self, export_model):
|
||||
"""Save a Semi-Supervised Deep Generative model to export_model."""
|
||||
|
||||
net_dict = self.net.state_dict()
|
||||
torch.save({'net_dict': net_dict}, export_model)
|
||||
torch.save({"net_dict": net_dict}, export_model)
|
||||
|
||||
def load_model(self, model_path):
|
||||
"""Load a Semi-Supervised Deep Generative model from model_path."""
|
||||
|
||||
model_dict = torch.load(model_path)
|
||||
self.net.load_state_dict(model_dict['net_dict'])
|
||||
self.net.load_state_dict(model_dict["net_dict"])
|
||||
|
||||
def save_results(self, export_json):
|
||||
"""Save results dict to a JSON-file."""
|
||||
with open(export_json, 'w') as fp:
|
||||
with open(export_json, "w") as fp:
|
||||
json.dump(self.results, fp)
|
||||
|
||||
def save_vae_results(self, export_json):
|
||||
"""Save variational autoencoder results dict to a JSON-file."""
|
||||
with open(export_json, 'w') as fp:
|
||||
with open(export_json, "w") as fp:
|
||||
json.dump(self.vae_results, fp)
|
||||
|
||||
Reference in New Issue
Block a user