adopted 2d rendering for vif dataset
This commit is contained in:
@@ -1,15 +1,24 @@
|
||||
from configargparse import ArgParser, YAMLConfigFileParser, ArgumentDefaultsRawHelpFormatter
|
||||
from configargparse import (
|
||||
ArgParser,
|
||||
YAMLConfigFileParser,
|
||||
ArgumentDefaultsRawHelpFormatter,
|
||||
)
|
||||
from sys import exit
|
||||
from pathlib import Path
|
||||
from pointcloudset import Dataset
|
||||
from rich.progress import track
|
||||
from pandas import DataFrame
|
||||
from PIL import Image
|
||||
import matplotlib
|
||||
import numpy as np
|
||||
|
||||
matplotlib.use("Agg")
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from util import (
|
||||
load_dataset_from_bag,
|
||||
existing_file,
|
||||
angle, angle_width, positive_int,
|
||||
load_dataset,
|
||||
existing_path,
|
||||
create_video_from_images,
|
||||
calculate_average_frame_rate,
|
||||
get_colormap_with_special_missing_color,
|
||||
@@ -23,11 +32,15 @@ def create_2d_projection(
|
||||
colormap_name: str,
|
||||
missing_data_color: str,
|
||||
reverse_colormap: bool,
|
||||
horizontal_resolution: int,
|
||||
vertical_resolution: int,
|
||||
):
|
||||
fig, ax = plt.subplots(figsize=(20.48, 5.12))
|
||||
fig, ax = plt.subplots(figsize=(float(horizontal_resolution) / 100, float(vertical_resolution) / 100))
|
||||
ax.imshow(
|
||||
df,
|
||||
cmap=get_colormap_with_special_missing_color(colormap_name, missing_data_color, reverse_colormap),
|
||||
cmap=get_colormap_with_special_missing_color(
|
||||
colormap_name, missing_data_color, reverse_colormap
|
||||
),
|
||||
aspect="auto",
|
||||
)
|
||||
ax.axis("off")
|
||||
@@ -35,7 +48,7 @@ def create_2d_projection(
|
||||
plt.savefig(tmp_file_path, dpi=100, bbox_inches="tight", pad_inches=0)
|
||||
plt.close()
|
||||
img = Image.open(tmp_file_path)
|
||||
img_resized = img.resize((2048, 512), Image.LANCZOS)
|
||||
img_resized = img.resize((horizontal_resolution, vertical_resolution), Image.LANCZOS)
|
||||
img_resized.save(output_file_path)
|
||||
|
||||
|
||||
@@ -47,13 +60,38 @@ def render_2d_images(
|
||||
colormap_name: str,
|
||||
missing_data_color: str,
|
||||
reverse_colormap: bool,
|
||||
horizontal_resolution: int,
|
||||
roi_angle_start: float,
|
||||
roi_angle_width: float,
|
||||
vertical_scale: int,
|
||||
) -> list[Path]:
|
||||
rendered_images = []
|
||||
|
||||
for i, pc in track(enumerate(dataset, 1), description="Rendering images...", total=len(dataset)):
|
||||
pc.data["horizontal_position"] = pc.data["original_id"] % 2048
|
||||
image_data = pc.data.pivot(index="ring", columns="horizontal_position", values="range")
|
||||
normalized_data = (image_data - image_data.min().min()) / (image_data.max().max() - image_data.min().min())
|
||||
for i, pc in track(
|
||||
enumerate(dataset, 1), description="Rendering images...", total=len(dataset)
|
||||
):
|
||||
complete_original_ids = DataFrame({'original_id': np.arange(0, (pc.data['ring'].max() + 1) * horizontal_resolution, dtype=np.uint32)})
|
||||
pc.data = complete_original_ids.merge(pc.data, on='original_id', how='left')
|
||||
pc.data['ring'] = (pc.data['original_id'] // horizontal_resolution)
|
||||
pc.data["horizontal_position"] = pc.data["original_id"] % horizontal_resolution
|
||||
image_data = pc.data.pivot(
|
||||
index="ring", columns="horizontal_position", values="range"
|
||||
)
|
||||
|
||||
if roi_angle_width != 360:
|
||||
roi_index_start = int(horizontal_resolution / 360 * roi_angle_start)
|
||||
roi_index_width = int(horizontal_resolution / 360 * roi_angle_width)
|
||||
roi_index_end = roi_index_start + roi_index_width
|
||||
|
||||
if roi_index_end < horizontal_resolution:
|
||||
image_data = image_data.iloc[:, roi_index_start:roi_index_end]
|
||||
else:
|
||||
roi_index_end = roi_index_end - horizontal_resolution
|
||||
image_data = image_data.iloc[:, roi_index_end:roi_index_start]
|
||||
|
||||
normalized_data = (image_data - image_data.min().min()) / (
|
||||
image_data.max().max() - image_data.min().min()
|
||||
)
|
||||
image_path = create_2d_projection(
|
||||
normalized_data,
|
||||
output_images_path / f"{image_pattern_prefix}_frame_{i:04d}.png",
|
||||
@@ -61,6 +99,8 @@ def render_2d_images(
|
||||
colormap_name,
|
||||
missing_data_color,
|
||||
reverse_colormap,
|
||||
horizontal_resolution=roi_index_width if roi_angle_width != 360 else horizontal_resolution,
|
||||
vertical_resolution=(pc.data['ring'].max() + 1) * vertical_scale
|
||||
)
|
||||
|
||||
rendered_images.append(image_path)
|
||||
@@ -75,19 +115,35 @@ def main() -> int:
|
||||
formatter_class=ArgumentDefaultsRawHelpFormatter,
|
||||
description="Render a 2d projection of a point cloud",
|
||||
)
|
||||
parser.add_argument("--render-config-file", is_config_file=True, help="yaml config file path")
|
||||
parser.add_argument("--input-bag-path", required=True, type=existing_file, help="path to bag file")
|
||||
parser.add_argument(
|
||||
"--tmp-files-path", default=Path("./tmp"), type=Path, help="path temporary files will be written to"
|
||||
"--render-config-file", is_config_file=True, help="yaml config file path"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-images", type=bool, default=True, help="if rendered frames should be outputted as images"
|
||||
"--input-experiment-path", required=True, type=existing_path, help="path to experiment. (directly to bag file, to parent folder for mcap)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-images-path", default=Path("./output"), type=Path, help="path rendered frames should be written to"
|
||||
"--tmp-files-path",
|
||||
default=Path("./tmp"),
|
||||
type=Path,
|
||||
help="path temporary files will be written to",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-video", type=bool, default=True, help="if rendered frames should be outputted as a video"
|
||||
"--output-images",
|
||||
type=bool,
|
||||
default=True,
|
||||
help="if rendered frames should be outputted as images",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-images-path",
|
||||
default=Path("./output"),
|
||||
type=Path,
|
||||
help="path rendered frames should be written to",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-video",
|
||||
type=bool,
|
||||
default=True,
|
||||
help="if rendered frames should be outputted as a video",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-video-path",
|
||||
@@ -95,12 +151,60 @@ def main() -> int:
|
||||
type=Path,
|
||||
help="path rendered video should be written to",
|
||||
)
|
||||
parser.add_argument("--output-images-prefix", default="2d_render", type=str, help="filename prefix for output")
|
||||
parser.add_argument("--colormap-name", default="viridis", type=str, help="name of matplotlib colormap to be used")
|
||||
parser.add_argument(
|
||||
"--missing-data-color", default="black", type=str, help="name of color to be used for missing data"
|
||||
"--output-images-prefix",
|
||||
default="2d_render",
|
||||
type=str,
|
||||
help="filename prefix for output",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--colormap-name",
|
||||
default="viridis",
|
||||
type=str,
|
||||
help="name of matplotlib colormap to be used",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--missing-data-color",
|
||||
default="black",
|
||||
type=str,
|
||||
help="name of color to be used for missing data",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--reverse-colormap",
|
||||
default=True,
|
||||
type=bool,
|
||||
help="if colormap should be reversed",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--pointcloud-topic",
|
||||
default="/ouster/points",
|
||||
type=str,
|
||||
help="topic in the ros/mcap bag file containing the point cloud data",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--horizontal-resolution",
|
||||
default=2048,
|
||||
type=positive_int,
|
||||
help="number of horizontal lidar data points",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--roi-angle-start",
|
||||
default=0,
|
||||
type=angle,
|
||||
help="angle where roi starts",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--roi-angle-width",
|
||||
default=360,
|
||||
type=angle_width,
|
||||
help="width of roi in degrees",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--vertical-scale",
|
||||
default=1,
|
||||
type=positive_int,
|
||||
help="multiplier for vertical scale, for better visualization",
|
||||
)
|
||||
parser.add_argument("--reverse-colormap", default=True, type=bool, help="if colormap should be reversed")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
@@ -113,7 +217,7 @@ def main() -> int:
|
||||
if args.output_video:
|
||||
args.output_video_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
dataset = load_dataset_from_bag(args.input_bag_path)
|
||||
dataset = load_dataset(args.input_experiment_path, args.pointcloud_topic)
|
||||
|
||||
images = render_2d_images(
|
||||
dataset,
|
||||
@@ -123,11 +227,21 @@ def main() -> int:
|
||||
args.colormap_name,
|
||||
args.missing_data_color,
|
||||
args.reverse_colormap,
|
||||
args.horizontal_resolution,
|
||||
args.roi_angle_start,
|
||||
args.roi_angle_width,
|
||||
args.vertical_scale,
|
||||
)
|
||||
|
||||
if args.output_video:
|
||||
input_images_pattern = f"{args.tmp_files_path / args.output_images_prefix}_frame_%04d.png"
|
||||
create_video_from_images(input_images_pattern, args.output_video_path, calculate_average_frame_rate(dataset))
|
||||
input_images_pattern = (
|
||||
f"{args.tmp_files_path / args.output_images_prefix}_frame_%04d.png"
|
||||
)
|
||||
create_video_from_images(
|
||||
input_images_pattern,
|
||||
args.output_video_path,
|
||||
calculate_average_frame_rate(dataset),
|
||||
)
|
||||
|
||||
if not args.output_images:
|
||||
for image in images:
|
||||
|
||||
Reference in New Issue
Block a user