tool updates

This commit is contained in:
Jan Kowalczyk
2025-08-13 14:15:15 +02:00
parent 44da3c2bd9
commit 8a5adc6360
3 changed files with 195 additions and 68 deletions

View File

@@ -1,11 +1,15 @@
from pathlib import Path
import torch
import torch.onnx
from networks.mnist_LeNet import MNIST_LeNet_Autoencoder
from networks.subter_LeNet import SubTer_LeNet_Autoencoder
from networks.subter_LeNet_rf import SubTer_Efficient_AE
def export_model_to_onnx(model, filepath, input_shape=(1, 1, 28, 28)):
def export_model_to_onnx(model, filepath):
model.eval() # Set the model to evaluation mode
dummy_input = torch.randn(input_shape) # Create a dummy input tensor
dummy_input = torch.randn(model.input_dim) # Create a dummy input tensor
torch.onnx.export(
model, # model being run
dummy_input, # model input (or a tuple for multiple inputs)
@@ -23,13 +27,17 @@ def export_model_to_onnx(model, filepath, input_shape=(1, 1, 28, 28)):
if __name__ == "__main__":
# Initialize the autoencoder model
autoencoder = MNIST_LeNet_Autoencoder(rep_dim=32)
output_folder_path = Path("./onnx_models")
output_folder_path.mkdir(parents=True, exist_ok=True)
# Define the file path where the ONNX model will be saved
onnx_file_path = "mnist_lenet_autoencoder.onnx"
models_to_visualize = [
(
SubTer_LeNet_Autoencoder(rep_dim=32),
output_folder_path / "subter_lenet_ae.onnx",
),
(SubTer_Efficient_AE(rep_dim=32), output_folder_path / "subter_ef_ae.onnx"),
]
# Export the model
export_model_to_onnx(autoencoder, onnx_file_path)
print(f"Model has been exported to {onnx_file_path}")
for model, output_path in models_to_visualize:
export_model_to_onnx(model, output_path)
print(f"Model has been exported to {output_path}")

3
tools/.gitignore vendored
View File

@@ -7,4 +7,7 @@ tmp
.envrc
.vscode
test
*.jpg
*.jpeg
*.png

View File

@@ -1,13 +1,18 @@
import json
import pickle
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
from rich.progress import track
from scipy.stats import sem, t
from sklearn.metrics import auc
models = ["deepsad", "isoforest", "ocsvm"]
evaluation_types = ["exp_based", "manual_based"]
parent_results_path = Path("/home/fedex/mt/results/done")
base_output_path = Path("/home/fedex/mt/results/tmp_plots")
# Confidence interval function
def confidence_interval(data, confidence=0.95):
n = len(data)
mean = np.mean(data)
@@ -16,67 +21,178 @@ def confidence_interval(data, confidence=0.95):
return mean, h
# Load ROC and AUC values from pickle files
roc_data = []
auc_scores = []
isoforest_roc_data = []
isoforest_auc_scores = []
def load_results_data(folder):
experiment_data = {}
results_path = Path(
"/home/fedex/mt/projects/thesis-kowalczyk-jan/Deep-SAD-PyTorch/log/DeepSAD/subter_kfold_0_0"
)
json_config_path = folder / "config.json"
with json_config_path.open("r") as f:
config = json.load(f)
try:
net = config["net_name"]
num_known_normal, num_known_anomalous = (
config["num_known_normal"],
config["num_known_outlier"],
)
semi_known_nums = (num_known_normal, num_known_anomalous)
latent_dim = config["latent_space_dim"]
for i in range(5):
with (results_path / f"results_{i}.pkl").open("rb") as f:
data = pickle.load(f)
roc_data.append(data["test_roc"])
auc_scores.append(data["test_auc"])
with (results_path / f"results.isoforest_{i}.pkl").open("rb") as f:
data = pickle.load(f)
isoforest_roc_data.append(data["test_roc"])
isoforest_auc_scores.append(data["test_auc"])
exp_title = f"{net} - {num_known_normal} normal, {num_known_anomalous} anomalous, latent dim {latent_dim}"
# Calculate mean and confidence interval for AUC scores
mean_auc, auc_ci = confidence_interval(auc_scores)
if not config["k_fold"]:
raise ValueError(f"{folder.name} was not trained as k-fold. Exiting...")
# Combine ROC curves
mean_fpr = np.linspace(0, 1, 100)
tprs = []
k_fold_num = config["k_fold_num"]
except KeyError as e:
print(f"Missing key in config.json for experiment folder {folder.name}: {e}")
raise
for fpr, tpr, _ in roc_data:
interp_tpr = np.interp(mean_fpr, fpr, tpr)
interp_tpr[0] = 0.0
tprs.append(interp_tpr)
experiment_data["exp_title"] = exp_title
experiment_data["k_fold_num"] = k_fold_num
experiment_data["semi_known_nums"] = semi_known_nums
experiment_data["folder"] = folder
experiment_data["net"] = net
experiment_data["latent_dim"] = latent_dim
mean_tpr = np.mean(tprs, axis=0)
mean_tpr[-1] = 1.0
std_tpr = np.std(tprs, axis=0)
roc_data = {}
roc_auc_data = {}
prc_data = {}
# Plot ROC curves with confidence margins
plt.figure()
plt.plot(
mean_fpr,
mean_tpr,
color="b",
label=f"Mean ROC (AUC = {mean_auc:.2f} ± {auc_ci:.2f})",
)
plt.fill_between(
mean_fpr,
mean_tpr - std_tpr,
mean_tpr + std_tpr,
color="b",
alpha=0.2,
label="± 1 std. dev.",
)
for model in models:
# You can adjust the number of folds if needed
for fold_idx in range(k_fold_num):
results_file = folder / f"results_{model}_{fold_idx}.pkl"
if not results_file.exists():
print(
f"Expected results file {results_file.name} does not exist. Skipping..."
)
with results_file.open("rb") as f:
data = pickle.load(f)
try:
if model == "deepsad":
test_results = data["test"]
for evaluation_type in evaluation_types:
eval_type_results = test_results[evaluation_type]
roc_data.setdefault(model, {}).setdefault(
evaluation_type, {}
)[fold_idx] = eval_type_results["roc"]
roc_auc_data.setdefault(model, {}).setdefault(
evaluation_type, {}
)[fold_idx] = eval_type_results["auc"]
prc_data.setdefault(model, {}).setdefault(
evaluation_type, {}
)[fold_idx] = eval_type_results["prc"]
elif model in ["isoforest", "ocsvm"]:
for evaluation_type in evaluation_types:
roc_data.setdefault(model, {}).setdefault(
evaluation_type, {}
)[fold_idx] = data[f"test_roc_{evaluation_type}"]
roc_auc_data.setdefault(model, {}).setdefault(
evaluation_type, {}
)[fold_idx] = data[f"test_auc_{evaluation_type}"]
prc_data.setdefault(model, {}).setdefault(
evaluation_type, {}
)[fold_idx] = data[f"test_prc_{evaluation_type}"]
# Plot each fold's ROC curve (optional)
for i, (fpr, tpr, _) in enumerate(roc_data):
plt.plot(fpr, tpr, lw=1, alpha=0.3, label=f"Fold {i + 1} ROC")
except KeyError as e:
print(f"Missing key in results file {results_file.name}: {e}")
raise
# Labels and legend
plt.plot([0, 1], [0, 1], "k--", label="Chance")
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC Curve with 5-Fold Cross-Validation")
plt.legend(loc="lower right")
plt.savefig("roc_curve_0_0.png")
experiment_data["roc_data"] = roc_data
experiment_data["roc_auc_data"] = roc_auc_data
experiment_data["prc_data"] = prc_data
return experiment_data
def plot_roc_curve(experiment_data, output_path):
try:
k_fold_num = experiment_data["k_fold_num"]
roc_data = experiment_data["roc_data"]
roc_auc_data = experiment_data["roc_auc_data"]
folder = experiment_data["folder"]
exp_title = experiment_data["exp_title"]
except KeyError as e:
print(f"Missing key in experiment data: {e}")
raise
for evaluation_type in evaluation_types:
plt.figure(figsize=(8, 6))
for model in models:
# Gather all folds' ROC data for this model and evaluation_type
fold_rocs = []
auc_scores = []
for fold_idx in range(k_fold_num):
try:
fpr, tpr, thresholds = roc_data[model][evaluation_type][fold_idx]
fold_rocs.append((fpr, tpr))
auc_scores.append(roc_auc_data[model][evaluation_type][fold_idx])
except KeyError:
continue
if not fold_rocs:
print(
f"No ROC data for model {model}, evaluation {evaluation_type} in {folder.name}"
)
continue
# Interpolate TPRs to a common FPR grid
mean_fpr = np.linspace(0, 1, 100)
interp_tprs = []
for fpr, tpr in fold_rocs:
interp_tpr = np.interp(mean_fpr, fpr, tpr)
interp_tpr[0] = 0.0
interp_tprs.append(interp_tpr)
mean_tpr = np.mean(interp_tprs, axis=0)
std_tpr = np.std(interp_tprs, axis=0)
mean_tpr[-1] = 1.0
# Mean and CI for AUC
mean_auc, auc_ci = confidence_interval(auc_scores)
# Plot mean ROC and std band
plt.plot(
mean_fpr,
mean_tpr,
label=f"{model} (AUC={mean_auc:.2f}±{auc_ci:.2f})",
)
plt.fill_between(
mean_fpr,
mean_tpr - std_tpr,
mean_tpr + std_tpr,
alpha=0.15,
)
plt.plot([0, 1], [0, 1], "k--", label="Chance")
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title(f"ROC Curve ({exp_title} - {evaluation_type})")
plt.legend(loc="lower right")
plt.tight_layout()
plt.savefig(
(output_path / f"roc_curve_{folder.name}_{evaluation_type}.png").as_posix()
)
plt.close()
def main():
base_output_path.mkdir(exist_ok=True, parents=True)
# Find all subfolders (skip files)
subfolders = [f for f in parent_results_path.iterdir() if f.is_dir()]
print(f"Found {len(subfolders)} subfolders in {parent_results_path}")
all_experiments_data = []
for folder in track(
subfolders, description="[cyan]Loading data...", total=len(subfolders)
):
all_experiments_data.append(load_results_data(folder))
print("Data loading complete. Plotting ROC curves...")
roc_curves_output_path = base_output_path / "roc_curves"
roc_curves_output_path.mkdir(exist_ok=True, parents=True)
for experiment_data in track(
all_experiments_data,
description="[green]Plotting ROC curves...",
total=len(all_experiments_data),
):
plot_roc_curve(experiment_data, roc_curves_output_path)
if __name__ == "__main__":
main()