added deepsad base code
This commit is contained in:
161
Deep-SAD-PyTorch/src/DeepSAD.py
Normal file
161
Deep-SAD-PyTorch/src/DeepSAD.py
Normal file
@@ -0,0 +1,161 @@
|
||||
import json
|
||||
import torch
|
||||
|
||||
from base.base_dataset import BaseADDataset
|
||||
from networks.main import build_network, build_autoencoder
|
||||
from optim.DeepSAD_trainer import DeepSADTrainer
|
||||
from optim.ae_trainer import AETrainer
|
||||
|
||||
|
||||
class DeepSAD(object):
|
||||
"""A class for the Deep SAD method.
|
||||
|
||||
Attributes:
|
||||
eta: Deep SAD hyperparameter eta (must be 0 < eta).
|
||||
c: Hypersphere center c.
|
||||
net_name: A string indicating the name of the neural network to use.
|
||||
net: The neural network phi.
|
||||
trainer: DeepSADTrainer to train a Deep SAD model.
|
||||
optimizer_name: A string indicating the optimizer to use for training the Deep SAD network.
|
||||
ae_net: The autoencoder network corresponding to phi for network weights pretraining.
|
||||
ae_trainer: AETrainer to train an autoencoder in pretraining.
|
||||
ae_optimizer_name: A string indicating the optimizer to use for pretraining the autoencoder.
|
||||
results: A dictionary to save the results.
|
||||
ae_results: A dictionary to save the autoencoder results.
|
||||
"""
|
||||
|
||||
def __init__(self, eta: float = 1.0):
|
||||
"""Inits DeepSAD with hyperparameter eta."""
|
||||
|
||||
self.eta = eta
|
||||
self.c = None # hypersphere center c
|
||||
|
||||
self.net_name = None
|
||||
self.net = None # neural network phi
|
||||
|
||||
self.trainer = None
|
||||
self.optimizer_name = None
|
||||
|
||||
self.ae_net = None # autoencoder network for pretraining
|
||||
self.ae_trainer = None
|
||||
self.ae_optimizer_name = None
|
||||
|
||||
self.results = {
|
||||
'train_time': None,
|
||||
'test_auc': None,
|
||||
'test_time': None,
|
||||
'test_scores': None,
|
||||
}
|
||||
|
||||
self.ae_results = {
|
||||
'train_time': None,
|
||||
'test_auc': None,
|
||||
'test_time': None
|
||||
}
|
||||
|
||||
def set_network(self, net_name):
|
||||
"""Builds the neural network phi."""
|
||||
self.net_name = net_name
|
||||
self.net = build_network(net_name)
|
||||
|
||||
def train(self, dataset: BaseADDataset, optimizer_name: str = 'adam', lr: float = 0.001, n_epochs: int = 50,
|
||||
lr_milestones: tuple = (), batch_size: int = 128, weight_decay: float = 1e-6, device: str = 'cuda',
|
||||
n_jobs_dataloader: int = 0):
|
||||
"""Trains the Deep SAD model on the training data."""
|
||||
|
||||
self.optimizer_name = optimizer_name
|
||||
self.trainer = DeepSADTrainer(self.c, self.eta, optimizer_name=optimizer_name, lr=lr, n_epochs=n_epochs,
|
||||
lr_milestones=lr_milestones, batch_size=batch_size, weight_decay=weight_decay,
|
||||
device=device, n_jobs_dataloader=n_jobs_dataloader)
|
||||
# Get the model
|
||||
self.net = self.trainer.train(dataset, self.net)
|
||||
self.results['train_time'] = self.trainer.train_time
|
||||
self.c = self.trainer.c.cpu().data.numpy().tolist() # get as list
|
||||
|
||||
def test(self, dataset: BaseADDataset, device: str = 'cuda', n_jobs_dataloader: int = 0):
|
||||
"""Tests the Deep SAD model on the test data."""
|
||||
|
||||
if self.trainer is None:
|
||||
self.trainer = DeepSADTrainer(self.c, self.eta, device=device, n_jobs_dataloader=n_jobs_dataloader)
|
||||
|
||||
self.trainer.test(dataset, self.net)
|
||||
|
||||
# Get results
|
||||
self.results['test_auc'] = self.trainer.test_auc
|
||||
self.results['test_time'] = self.trainer.test_time
|
||||
self.results['test_scores'] = self.trainer.test_scores
|
||||
|
||||
def pretrain(self, dataset: BaseADDataset, optimizer_name: str = 'adam', lr: float = 0.001, n_epochs: int = 100,
|
||||
lr_milestones: tuple = (), batch_size: int = 128, weight_decay: float = 1e-6, device: str = 'cuda',
|
||||
n_jobs_dataloader: int = 0):
|
||||
"""Pretrains the weights for the Deep SAD network phi via autoencoder."""
|
||||
|
||||
# Set autoencoder network
|
||||
self.ae_net = build_autoencoder(self.net_name)
|
||||
|
||||
# Train
|
||||
self.ae_optimizer_name = optimizer_name
|
||||
self.ae_trainer = AETrainer(optimizer_name, lr=lr, n_epochs=n_epochs, lr_milestones=lr_milestones,
|
||||
batch_size=batch_size, weight_decay=weight_decay, device=device,
|
||||
n_jobs_dataloader=n_jobs_dataloader)
|
||||
self.ae_net = self.ae_trainer.train(dataset, self.ae_net)
|
||||
|
||||
# Get train results
|
||||
self.ae_results['train_time'] = self.ae_trainer.train_time
|
||||
|
||||
# Test
|
||||
self.ae_trainer.test(dataset, self.ae_net)
|
||||
|
||||
# Get test results
|
||||
self.ae_results['test_auc'] = self.ae_trainer.test_auc
|
||||
self.ae_results['test_time'] = self.ae_trainer.test_time
|
||||
|
||||
# Initialize Deep SAD network weights from pre-trained encoder
|
||||
self.init_network_weights_from_pretraining()
|
||||
|
||||
def init_network_weights_from_pretraining(self):
|
||||
"""Initialize the Deep SAD network weights from the encoder weights of the pretraining autoencoder."""
|
||||
|
||||
net_dict = self.net.state_dict()
|
||||
ae_net_dict = self.ae_net.state_dict()
|
||||
|
||||
# Filter out decoder network keys
|
||||
ae_net_dict = {k: v for k, v in ae_net_dict.items() if k in net_dict}
|
||||
# Overwrite values in the existing state_dict
|
||||
net_dict.update(ae_net_dict)
|
||||
# Load the new state_dict
|
||||
self.net.load_state_dict(net_dict)
|
||||
|
||||
def save_model(self, export_model, save_ae=True):
|
||||
"""Save Deep SAD model to export_model."""
|
||||
|
||||
net_dict = self.net.state_dict()
|
||||
ae_net_dict = self.ae_net.state_dict() if save_ae else None
|
||||
|
||||
torch.save({'c': self.c,
|
||||
'net_dict': net_dict,
|
||||
'ae_net_dict': ae_net_dict}, export_model)
|
||||
|
||||
def load_model(self, model_path, load_ae=False, map_location='cpu'):
|
||||
"""Load Deep SAD model from model_path."""
|
||||
|
||||
model_dict = torch.load(model_path, map_location=map_location)
|
||||
|
||||
self.c = model_dict['c']
|
||||
self.net.load_state_dict(model_dict['net_dict'])
|
||||
|
||||
# load autoencoder parameters if specified
|
||||
if load_ae:
|
||||
if self.ae_net is None:
|
||||
self.ae_net = build_autoencoder(self.net_name)
|
||||
self.ae_net.load_state_dict(model_dict['ae_net_dict'])
|
||||
|
||||
def save_results(self, export_json):
|
||||
"""Save results dict to a JSON-file."""
|
||||
with open(export_json, 'w') as fp:
|
||||
json.dump(self.results, fp)
|
||||
|
||||
def save_ae_results(self, export_json):
|
||||
"""Save autoencoder results dict to a JSON-file."""
|
||||
with open(export_json, 'w') as fp:
|
||||
json.dump(self.ae_results, fp)
|
||||
Reference in New Issue
Block a user