added deepsad base code
This commit is contained in:
128
Deep-SAD-PyTorch/src/baselines/SemiDGM.py
Normal file
128
Deep-SAD-PyTorch/src/baselines/SemiDGM.py
Normal file
@@ -0,0 +1,128 @@
|
||||
import json
|
||||
import torch
|
||||
|
||||
from base.base_dataset import BaseADDataset
|
||||
from networks.main import build_network, build_autoencoder
|
||||
from optim import SemiDeepGenerativeTrainer, VAETrainer
|
||||
|
||||
|
||||
class SemiDeepGenerativeModel(object):
|
||||
"""A class for the Semi-Supervised Deep Generative model (M1+M2 model).
|
||||
|
||||
Paper: Kingma et al. (2014). Semi-supervised learning with deep generative models. In NIPS (pp. 3581-3589).
|
||||
Link: https://papers.nips.cc/paper/5352-semi-supervised-learning-with-deep-generative-models.pdf
|
||||
|
||||
Attributes:
|
||||
net_name: A string indicating the name of the neural network to use.
|
||||
net: The neural network.
|
||||
trainer: SemiDeepGenerativeTrainer to train a Semi-Supervised Deep Generative model.
|
||||
optimizer_name: A string indicating the optimizer to use for training.
|
||||
results: A dictionary to save the results.
|
||||
"""
|
||||
|
||||
def __init__(self, alpha: float = 0.1):
|
||||
"""Inits SemiDeepGenerativeModel."""
|
||||
|
||||
self.alpha = alpha
|
||||
|
||||
self.net_name = None
|
||||
self.net = None
|
||||
|
||||
self.trainer = None
|
||||
self.optimizer_name = None
|
||||
|
||||
self.vae_net = None # variational autoencoder network for pretraining
|
||||
self.vae_trainer = None
|
||||
self.vae_optimizer_name = None
|
||||
|
||||
self.results = {
|
||||
'train_time': None,
|
||||
'test_auc': None,
|
||||
'test_time': None,
|
||||
'test_scores': None,
|
||||
}
|
||||
|
||||
self.vae_results = {
|
||||
'train_time': None,
|
||||
'test_auc': None,
|
||||
'test_time': None
|
||||
}
|
||||
|
||||
def set_vae(self, net_name):
|
||||
"""Builds the variational autoencoder network for pretraining."""
|
||||
self.net_name = net_name
|
||||
self.vae_net = build_autoencoder(self.net_name) # VAE for pretraining
|
||||
|
||||
def set_network(self, net_name):
|
||||
"""Builds the neural network."""
|
||||
self.net_name = net_name
|
||||
self.net = build_network(net_name, ae_net=self.vae_net) # full M1+M2 model
|
||||
|
||||
def train(self, dataset: BaseADDataset, optimizer_name: str = 'adam', lr: float = 0.001, n_epochs: int = 50,
|
||||
lr_milestones: tuple = (), batch_size: int = 128, weight_decay: float = 1e-6, device: str = 'cuda',
|
||||
n_jobs_dataloader: int = 0):
|
||||
"""Trains the Semi-Supervised Deep Generative model on the training data."""
|
||||
|
||||
self.optimizer_name = optimizer_name
|
||||
|
||||
self.trainer = SemiDeepGenerativeTrainer(alpha=self.alpha, optimizer_name=optimizer_name, lr=lr,
|
||||
n_epochs=n_epochs, lr_milestones=lr_milestones, batch_size=batch_size,
|
||||
weight_decay=weight_decay, device=device,
|
||||
n_jobs_dataloader=n_jobs_dataloader)
|
||||
self.net = self.trainer.train(dataset, self.net)
|
||||
self.results['train_time'] = self.trainer.train_time
|
||||
|
||||
def test(self, dataset: BaseADDataset, device: str = 'cuda', n_jobs_dataloader: int = 0):
|
||||
"""Tests the Semi-Supervised Deep Generative model on the test data."""
|
||||
|
||||
if self.trainer is None:
|
||||
self.trainer = SemiDeepGenerativeTrainer(alpha=self.alpha, device=device,
|
||||
n_jobs_dataloader=n_jobs_dataloader)
|
||||
|
||||
self.trainer.test(dataset, self.net)
|
||||
# Get results
|
||||
self.results['test_auc'] = self.trainer.test_auc
|
||||
self.results['test_time'] = self.trainer.test_time
|
||||
self.results['test_scores'] = self.trainer.test_scores
|
||||
|
||||
def pretrain(self, dataset: BaseADDataset, optimizer_name: str = 'adam', lr: float = 0.001, n_epochs: int = 100,
|
||||
lr_milestones: tuple = (), batch_size: int = 128, weight_decay: float = 1e-6, device: str = 'cuda',
|
||||
n_jobs_dataloader: int = 0):
|
||||
"""Pretrains a variational autoencoder (M1) for the Semi-Supervised Deep Generative model."""
|
||||
|
||||
# Train
|
||||
self.vae_optimizer_name = optimizer_name
|
||||
self.vae_trainer = VAETrainer(optimizer_name=optimizer_name, lr=lr, n_epochs=n_epochs,
|
||||
lr_milestones=lr_milestones, batch_size=batch_size, weight_decay=weight_decay,
|
||||
device=device, n_jobs_dataloader=n_jobs_dataloader)
|
||||
self.vae_net = self.vae_trainer.train(dataset, self.vae_net)
|
||||
# Get train results
|
||||
self.vae_results['train_time'] = self.vae_trainer.train_time
|
||||
|
||||
# Test
|
||||
self.vae_trainer.test(dataset, self.vae_net)
|
||||
# Get test results
|
||||
self.vae_results['test_auc'] = self.vae_trainer.test_auc
|
||||
self.vae_results['test_time'] = self.vae_trainer.test_time
|
||||
|
||||
def save_model(self, export_model):
|
||||
"""Save a Semi-Supervised Deep Generative model to export_model."""
|
||||
|
||||
net_dict = self.net.state_dict()
|
||||
torch.save({'net_dict': net_dict}, export_model)
|
||||
|
||||
def load_model(self, model_path):
|
||||
"""Load a Semi-Supervised Deep Generative model from model_path."""
|
||||
|
||||
model_dict = torch.load(model_path)
|
||||
self.net.load_state_dict(model_dict['net_dict'])
|
||||
|
||||
def save_results(self, export_json):
|
||||
"""Save results dict to a JSON-file."""
|
||||
with open(export_json, 'w') as fp:
|
||||
json.dump(self.results, fp)
|
||||
|
||||
def save_vae_results(self, export_json):
|
||||
"""Save variational autoencoder results dict to a JSON-file."""
|
||||
with open(export_json, 'w') as fp:
|
||||
json.dump(self.vae_results, fp)
|
||||
Reference in New Issue
Block a user