added deepsad base code
This commit is contained in:
52
Deep-SAD-PyTorch/src/networks/layers/standard.py
Normal file
52
Deep-SAD-PyTorch/src/networks/layers/standard.py
Normal file
@@ -0,0 +1,52 @@
|
||||
import torch
|
||||
|
||||
from torch.nn import Module
|
||||
from torch.nn import init
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
|
||||
# Acknowledgements: https://github.com/wohlert/semi-supervised-pytorch
|
||||
class Standardize(Module):
|
||||
"""
|
||||
Applies (element-wise) standardization with trainable translation parameter μ and scale parameter σ, i.e. computes
|
||||
(x - μ) / σ where '/' is applied element-wise.
|
||||
|
||||
Args:
|
||||
in_features: size of each input sample
|
||||
out_features: size of each output sample
|
||||
bias: If set to False, the layer will not learn a translation parameter μ.
|
||||
Default: ``True``
|
||||
|
||||
Attributes:
|
||||
mu: the learnable translation parameter μ.
|
||||
std: the learnable scale parameter σ.
|
||||
"""
|
||||
__constants__ = ['mu']
|
||||
|
||||
def __init__(self, in_features, bias=True, eps=1e-6):
|
||||
super(Standardize, self).__init__()
|
||||
self.in_features = in_features
|
||||
self.out_features = in_features
|
||||
self.eps = eps
|
||||
self.std = Parameter(torch.Tensor(in_features))
|
||||
if bias:
|
||||
self.mu = Parameter(torch.Tensor(in_features))
|
||||
else:
|
||||
self.register_parameter('mu', None)
|
||||
self.reset_parameters()
|
||||
|
||||
def reset_parameters(self):
|
||||
init.constant_(self.std, 1)
|
||||
if self.mu is not None:
|
||||
init.constant_(self.mu, 0)
|
||||
|
||||
def forward(self, x):
|
||||
if self.mu is not None:
|
||||
x -= self.mu
|
||||
x = torch.div(x, self.std + self.eps)
|
||||
return x
|
||||
|
||||
def extra_repr(self):
|
||||
return 'in_features={}, out_features={}, bias={}'.format(
|
||||
self.in_features, self.out_features, self.mu is not None
|
||||
)
|
||||
Reference in New Issue
Block a user