added deepsad base code
This commit is contained in:
173
Deep-SAD-PyTorch/src/optim/DeepSAD_trainer.py
Normal file
173
Deep-SAD-PyTorch/src/optim/DeepSAD_trainer.py
Normal file
@@ -0,0 +1,173 @@
|
||||
from base.base_trainer import BaseTrainer
|
||||
from base.base_dataset import BaseADDataset
|
||||
from base.base_net import BaseNet
|
||||
from torch.utils.data.dataloader import DataLoader
|
||||
from sklearn.metrics import roc_auc_score
|
||||
|
||||
import logging
|
||||
import time
|
||||
import torch
|
||||
import torch.optim as optim
|
||||
import numpy as np
|
||||
|
||||
|
||||
class DeepSADTrainer(BaseTrainer):
|
||||
|
||||
def __init__(self, c, eta: float, optimizer_name: str = 'adam', lr: float = 0.001, n_epochs: int = 150,
|
||||
lr_milestones: tuple = (), batch_size: int = 128, weight_decay: float = 1e-6, device: str = 'cuda',
|
||||
n_jobs_dataloader: int = 0):
|
||||
super().__init__(optimizer_name, lr, n_epochs, lr_milestones, batch_size, weight_decay, device,
|
||||
n_jobs_dataloader)
|
||||
|
||||
# Deep SAD parameters
|
||||
self.c = torch.tensor(c, device=self.device) if c is not None else None
|
||||
self.eta = eta
|
||||
|
||||
# Optimization parameters
|
||||
self.eps = 1e-6
|
||||
|
||||
# Results
|
||||
self.train_time = None
|
||||
self.test_auc = None
|
||||
self.test_time = None
|
||||
self.test_scores = None
|
||||
|
||||
def train(self, dataset: BaseADDataset, net: BaseNet):
|
||||
logger = logging.getLogger()
|
||||
|
||||
# Get train data loader
|
||||
train_loader, _ = dataset.loaders(batch_size=self.batch_size, num_workers=self.n_jobs_dataloader)
|
||||
|
||||
# Set device for network
|
||||
net = net.to(self.device)
|
||||
|
||||
# Set optimizer (Adam optimizer for now)
|
||||
optimizer = optim.Adam(net.parameters(), lr=self.lr, weight_decay=self.weight_decay)
|
||||
|
||||
# Set learning rate scheduler
|
||||
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=self.lr_milestones, gamma=0.1)
|
||||
|
||||
# Initialize hypersphere center c (if c not loaded)
|
||||
if self.c is None:
|
||||
logger.info('Initializing center c...')
|
||||
self.c = self.init_center_c(train_loader, net)
|
||||
logger.info('Center c initialized.')
|
||||
|
||||
# Training
|
||||
logger.info('Starting training...')
|
||||
start_time = time.time()
|
||||
net.train()
|
||||
for epoch in range(self.n_epochs):
|
||||
|
||||
scheduler.step()
|
||||
if epoch in self.lr_milestones:
|
||||
logger.info(' LR scheduler: new learning rate is %g' % float(scheduler.get_lr()[0]))
|
||||
|
||||
epoch_loss = 0.0
|
||||
n_batches = 0
|
||||
epoch_start_time = time.time()
|
||||
for data in train_loader:
|
||||
inputs, _, semi_targets, _ = data
|
||||
inputs, semi_targets = inputs.to(self.device), semi_targets.to(self.device)
|
||||
|
||||
# Zero the network parameter gradients
|
||||
optimizer.zero_grad()
|
||||
|
||||
# Update network parameters via backpropagation: forward + backward + optimize
|
||||
outputs = net(inputs)
|
||||
dist = torch.sum((outputs - self.c) ** 2, dim=1)
|
||||
losses = torch.where(semi_targets == 0, dist, self.eta * ((dist + self.eps) ** semi_targets.float()))
|
||||
loss = torch.mean(losses)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
epoch_loss += loss.item()
|
||||
n_batches += 1
|
||||
|
||||
# log epoch statistics
|
||||
epoch_train_time = time.time() - epoch_start_time
|
||||
logger.info(f'| Epoch: {epoch + 1:03}/{self.n_epochs:03} | Train Time: {epoch_train_time:.3f}s '
|
||||
f'| Train Loss: {epoch_loss / n_batches:.6f} |')
|
||||
|
||||
self.train_time = time.time() - start_time
|
||||
logger.info('Training Time: {:.3f}s'.format(self.train_time))
|
||||
logger.info('Finished training.')
|
||||
|
||||
return net
|
||||
|
||||
def test(self, dataset: BaseADDataset, net: BaseNet):
|
||||
logger = logging.getLogger()
|
||||
|
||||
# Get test data loader
|
||||
_, test_loader = dataset.loaders(batch_size=self.batch_size, num_workers=self.n_jobs_dataloader)
|
||||
|
||||
# Set device for network
|
||||
net = net.to(self.device)
|
||||
|
||||
# Testing
|
||||
logger.info('Starting testing...')
|
||||
epoch_loss = 0.0
|
||||
n_batches = 0
|
||||
start_time = time.time()
|
||||
idx_label_score = []
|
||||
net.eval()
|
||||
with torch.no_grad():
|
||||
for data in test_loader:
|
||||
inputs, labels, semi_targets, idx = data
|
||||
|
||||
inputs = inputs.to(self.device)
|
||||
labels = labels.to(self.device)
|
||||
semi_targets = semi_targets.to(self.device)
|
||||
idx = idx.to(self.device)
|
||||
|
||||
outputs = net(inputs)
|
||||
dist = torch.sum((outputs - self.c) ** 2, dim=1)
|
||||
losses = torch.where(semi_targets == 0, dist, self.eta * ((dist + self.eps) ** semi_targets.float()))
|
||||
loss = torch.mean(losses)
|
||||
scores = dist
|
||||
|
||||
# Save triples of (idx, label, score) in a list
|
||||
idx_label_score += list(zip(idx.cpu().data.numpy().tolist(),
|
||||
labels.cpu().data.numpy().tolist(),
|
||||
scores.cpu().data.numpy().tolist()))
|
||||
|
||||
epoch_loss += loss.item()
|
||||
n_batches += 1
|
||||
|
||||
self.test_time = time.time() - start_time
|
||||
self.test_scores = idx_label_score
|
||||
|
||||
# Compute AUC
|
||||
_, labels, scores = zip(*idx_label_score)
|
||||
labels = np.array(labels)
|
||||
scores = np.array(scores)
|
||||
self.test_auc = roc_auc_score(labels, scores)
|
||||
|
||||
# Log results
|
||||
logger.info('Test Loss: {:.6f}'.format(epoch_loss / n_batches))
|
||||
logger.info('Test AUC: {:.2f}%'.format(100. * self.test_auc))
|
||||
logger.info('Test Time: {:.3f}s'.format(self.test_time))
|
||||
logger.info('Finished testing.')
|
||||
|
||||
def init_center_c(self, train_loader: DataLoader, net: BaseNet, eps=0.1):
|
||||
"""Initialize hypersphere center c as the mean from an initial forward pass on the data."""
|
||||
n_samples = 0
|
||||
c = torch.zeros(net.rep_dim, device=self.device)
|
||||
|
||||
net.eval()
|
||||
with torch.no_grad():
|
||||
for data in train_loader:
|
||||
# get the inputs of the batch
|
||||
inputs, _, _, _ = data
|
||||
inputs = inputs.to(self.device)
|
||||
outputs = net(inputs)
|
||||
n_samples += outputs.shape[0]
|
||||
c += torch.sum(outputs, dim=0)
|
||||
|
||||
c /= n_samples
|
||||
|
||||
# If c_i is too close to 0, set to +-eps. Reason: a zero unit can be trivially matched with zero weights.
|
||||
c[(abs(c) < eps) & (c < 0)] = -eps
|
||||
c[(abs(c) < eps) & (c > 0)] = eps
|
||||
|
||||
return c
|
||||
188
Deep-SAD-PyTorch/src/optim/SemiDGM_trainer.py
Normal file
188
Deep-SAD-PyTorch/src/optim/SemiDGM_trainer.py
Normal file
@@ -0,0 +1,188 @@
|
||||
from base.base_trainer import BaseTrainer
|
||||
from base.base_dataset import BaseADDataset
|
||||
from base.base_net import BaseNet
|
||||
from optim.variational import SVI, ImportanceWeightedSampler
|
||||
from utils.misc import binary_cross_entropy
|
||||
from sklearn.metrics import roc_auc_score
|
||||
|
||||
import logging
|
||||
import time
|
||||
import torch
|
||||
import torch.optim as optim
|
||||
import numpy as np
|
||||
|
||||
|
||||
class SemiDeepGenerativeTrainer(BaseTrainer):
|
||||
|
||||
def __init__(self, alpha: float = 0.1, optimizer_name: str = 'adam', lr: float = 0.001, n_epochs: int = 150,
|
||||
lr_milestones: tuple = (), batch_size: int = 128, weight_decay: float = 1e-6, device: str = 'cuda',
|
||||
n_jobs_dataloader: int = 0):
|
||||
super().__init__(optimizer_name, lr, n_epochs, lr_milestones, batch_size, weight_decay, device,
|
||||
n_jobs_dataloader)
|
||||
|
||||
self.alpha = alpha
|
||||
|
||||
# Results
|
||||
self.train_time = None
|
||||
self.test_auc = None
|
||||
self.test_time = None
|
||||
self.test_scores = None
|
||||
|
||||
def train(self, dataset: BaseADDataset, net: BaseNet):
|
||||
logger = logging.getLogger()
|
||||
|
||||
# Get train data loader
|
||||
train_loader, _ = dataset.loaders(batch_size=self.batch_size, num_workers=self.n_jobs_dataloader)
|
||||
|
||||
# Set device
|
||||
net = net.to(self.device)
|
||||
|
||||
# Use importance weighted sampler (Burda et al., 2015) to get a better estimate on the log-likelihood.
|
||||
sampler = ImportanceWeightedSampler(mc=1, iw=1)
|
||||
elbo = SVI(net, likelihood=binary_cross_entropy, sampler=sampler)
|
||||
|
||||
# Set optimizer (Adam optimizer for now)
|
||||
optimizer = optim.Adam(net.parameters(), lr=self.lr, weight_decay=self.weight_decay)
|
||||
|
||||
# Set learning rate scheduler
|
||||
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=self.lr_milestones, gamma=0.1)
|
||||
|
||||
# Training
|
||||
logger.info('Starting training...')
|
||||
start_time = time.time()
|
||||
net.train()
|
||||
for epoch in range(self.n_epochs):
|
||||
|
||||
scheduler.step()
|
||||
if epoch in self.lr_milestones:
|
||||
logger.info(' LR scheduler: new learning rate is %g' % float(scheduler.get_lr()[0]))
|
||||
|
||||
epoch_loss = 0.0
|
||||
n_batches = 0
|
||||
epoch_start_time = time.time()
|
||||
for data in train_loader:
|
||||
inputs, labels, semi_targets, _ = data
|
||||
|
||||
inputs = inputs.to(self.device)
|
||||
labels = labels.to(self.device)
|
||||
semi_targets = semi_targets.to(self.device)
|
||||
|
||||
# Get labeled and unlabeled data and make labels one-hot
|
||||
inputs = inputs.view(inputs.size(0), -1)
|
||||
x = inputs[semi_targets != 0]
|
||||
u = inputs[semi_targets == 0]
|
||||
y = labels[semi_targets != 0]
|
||||
if y.nelement() > 1:
|
||||
y_onehot = torch.Tensor(y.size(0), 2).to(self.device) # two labels: 0: normal, 1: outlier
|
||||
y_onehot.zero_()
|
||||
y_onehot.scatter_(1, y.view(-1, 1), 1)
|
||||
|
||||
# Zero the network parameter gradients
|
||||
optimizer.zero_grad()
|
||||
|
||||
# Update network parameters via backpropagation: forward + backward + optimize
|
||||
if y.nelement() < 2:
|
||||
L = torch.tensor(0.0).to(self.device)
|
||||
else:
|
||||
L = -elbo(x, y_onehot)
|
||||
U = -elbo(u)
|
||||
|
||||
# Regular cross entropy
|
||||
if y.nelement() < 2:
|
||||
classication_loss = torch.tensor(0.0).to(self.device)
|
||||
else:
|
||||
# Add auxiliary classification loss q(y|x)
|
||||
logits = net.classify(x)
|
||||
eps = 1e-8
|
||||
classication_loss = torch.sum(y_onehot * torch.log(logits + eps), dim=1).mean()
|
||||
|
||||
# Overall loss
|
||||
loss = L - self.alpha * classication_loss + U # J_alpha
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
epoch_loss += loss.item()
|
||||
n_batches += 1
|
||||
|
||||
# log epoch statistics
|
||||
epoch_train_time = time.time() - epoch_start_time
|
||||
logger.info(f'| Epoch: {epoch + 1:03}/{self.n_epochs:03} | Train Time: {epoch_train_time:.3f}s '
|
||||
f'| Train Loss: {epoch_loss / n_batches:.6f} |')
|
||||
|
||||
self.train_time = time.time() - start_time
|
||||
logger.info('Training Time: {:.3f}s'.format(self.train_time))
|
||||
logger.info('Finished training.')
|
||||
|
||||
return net
|
||||
|
||||
def test(self, dataset: BaseADDataset, net: BaseNet):
|
||||
logger = logging.getLogger()
|
||||
|
||||
# Get test data loader
|
||||
_, test_loader = dataset.loaders(batch_size=self.batch_size, num_workers=self.n_jobs_dataloader)
|
||||
|
||||
# Set device
|
||||
net = net.to(self.device)
|
||||
|
||||
# Use importance weighted sampler (Burda et al., 2015) to get a better estimate on the log-likelihood.
|
||||
sampler = ImportanceWeightedSampler(mc=1, iw=1)
|
||||
elbo = SVI(net, likelihood=binary_cross_entropy, sampler=sampler)
|
||||
|
||||
# Testing
|
||||
logger.info('Starting testing...')
|
||||
epoch_loss = 0.0
|
||||
n_batches = 0
|
||||
start_time = time.time()
|
||||
idx_label_score = []
|
||||
net.eval()
|
||||
with torch.no_grad():
|
||||
for data in test_loader:
|
||||
inputs, labels, _, idx = data
|
||||
inputs = inputs.to(self.device)
|
||||
labels = labels.to(self.device)
|
||||
idx = idx.to(self.device)
|
||||
|
||||
# All test data is considered unlabeled
|
||||
inputs = inputs.view(inputs.size(0), -1)
|
||||
u = inputs
|
||||
y = labels
|
||||
y_onehot = torch.Tensor(y.size(0), 2).to(self.device) # two labels: 0: normal, 1: outlier
|
||||
y_onehot.zero_()
|
||||
y_onehot.scatter_(1, y.view(-1, 1), 1)
|
||||
|
||||
# Compute loss
|
||||
L = -elbo(u, y_onehot)
|
||||
U = -elbo(u)
|
||||
|
||||
logits = net.classify(u)
|
||||
eps = 1e-8
|
||||
classication_loss = -torch.sum(y_onehot * torch.log(logits + eps), dim=1).mean()
|
||||
|
||||
loss = L + self.alpha * classication_loss + U # J_alpha
|
||||
|
||||
# Compute scores
|
||||
scores = logits[:, 1] # likelihood/confidence for anomalous class as anomaly score
|
||||
|
||||
# Save triple of (idx, label, score) in a list
|
||||
idx_label_score += list(zip(idx.cpu().data.numpy().tolist(),
|
||||
labels.cpu().data.numpy().tolist(),
|
||||
scores.cpu().data.numpy().tolist()))
|
||||
|
||||
epoch_loss += loss.item()
|
||||
n_batches += 1
|
||||
|
||||
self.test_time = time.time() - start_time
|
||||
self.test_scores = idx_label_score
|
||||
|
||||
# Compute AUC
|
||||
_, labels, scores = zip(*idx_label_score)
|
||||
labels = np.array(labels)
|
||||
scores = np.array(scores)
|
||||
self.test_auc = roc_auc_score(labels, scores)
|
||||
|
||||
# Log results
|
||||
logger.info('Test Loss: {:.6f}'.format(epoch_loss / n_batches))
|
||||
logger.info('Test AUC: {:.2f}%'.format(100. * self.test_auc))
|
||||
logger.info('Test Time: {:.3f}s'.format(self.test_time))
|
||||
logger.info('Finished testing.')
|
||||
5
Deep-SAD-PyTorch/src/optim/__init__.py
Normal file
5
Deep-SAD-PyTorch/src/optim/__init__.py
Normal file
@@ -0,0 +1,5 @@
|
||||
from .DeepSAD_trainer import DeepSADTrainer
|
||||
from .ae_trainer import AETrainer
|
||||
from .SemiDGM_trainer import SemiDeepGenerativeTrainer
|
||||
from .vae_trainer import VAETrainer
|
||||
from .variational import SVI, ImportanceWeightedSampler
|
||||
136
Deep-SAD-PyTorch/src/optim/ae_trainer.py
Normal file
136
Deep-SAD-PyTorch/src/optim/ae_trainer.py
Normal file
@@ -0,0 +1,136 @@
|
||||
from base.base_trainer import BaseTrainer
|
||||
from base.base_dataset import BaseADDataset
|
||||
from base.base_net import BaseNet
|
||||
from sklearn.metrics import roc_auc_score
|
||||
|
||||
import logging
|
||||
import time
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
import numpy as np
|
||||
|
||||
|
||||
class AETrainer(BaseTrainer):
|
||||
|
||||
def __init__(self, optimizer_name: str = 'adam', lr: float = 0.001, n_epochs: int = 150, lr_milestones: tuple = (),
|
||||
batch_size: int = 128, weight_decay: float = 1e-6, device: str = 'cuda', n_jobs_dataloader: int = 0):
|
||||
super().__init__(optimizer_name, lr, n_epochs, lr_milestones, batch_size, weight_decay, device,
|
||||
n_jobs_dataloader)
|
||||
|
||||
# Results
|
||||
self.train_time = None
|
||||
self.test_auc = None
|
||||
self.test_time = None
|
||||
|
||||
def train(self, dataset: BaseADDataset, ae_net: BaseNet):
|
||||
logger = logging.getLogger()
|
||||
|
||||
# Get train data loader
|
||||
train_loader, _ = dataset.loaders(batch_size=self.batch_size, num_workers=self.n_jobs_dataloader)
|
||||
|
||||
# Set loss
|
||||
criterion = nn.MSELoss(reduction='none')
|
||||
|
||||
# Set device
|
||||
ae_net = ae_net.to(self.device)
|
||||
criterion = criterion.to(self.device)
|
||||
|
||||
# Set optimizer (Adam optimizer for now)
|
||||
optimizer = optim.Adam(ae_net.parameters(), lr=self.lr, weight_decay=self.weight_decay)
|
||||
|
||||
# Set learning rate scheduler
|
||||
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=self.lr_milestones, gamma=0.1)
|
||||
|
||||
# Training
|
||||
logger.info('Starting pretraining...')
|
||||
start_time = time.time()
|
||||
ae_net.train()
|
||||
for epoch in range(self.n_epochs):
|
||||
|
||||
scheduler.step()
|
||||
if epoch in self.lr_milestones:
|
||||
logger.info(' LR scheduler: new learning rate is %g' % float(scheduler.get_lr()[0]))
|
||||
|
||||
epoch_loss = 0.0
|
||||
n_batches = 0
|
||||
epoch_start_time = time.time()
|
||||
for data in train_loader:
|
||||
inputs, _, _, _ = data
|
||||
inputs = inputs.to(self.device)
|
||||
|
||||
# Zero the network parameter gradients
|
||||
optimizer.zero_grad()
|
||||
|
||||
# Update network parameters via backpropagation: forward + backward + optimize
|
||||
rec = ae_net(inputs)
|
||||
rec_loss = criterion(rec, inputs)
|
||||
loss = torch.mean(rec_loss)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
epoch_loss += loss.item()
|
||||
n_batches += 1
|
||||
|
||||
# log epoch statistics
|
||||
epoch_train_time = time.time() - epoch_start_time
|
||||
logger.info(f'| Epoch: {epoch + 1:03}/{self.n_epochs:03} | Train Time: {epoch_train_time:.3f}s '
|
||||
f'| Train Loss: {epoch_loss / n_batches:.6f} |')
|
||||
|
||||
self.train_time = time.time() - start_time
|
||||
logger.info('Pretraining Time: {:.3f}s'.format(self.train_time))
|
||||
logger.info('Finished pretraining.')
|
||||
|
||||
return ae_net
|
||||
|
||||
def test(self, dataset: BaseADDataset, ae_net: BaseNet):
|
||||
logger = logging.getLogger()
|
||||
|
||||
# Get test data loader
|
||||
_, test_loader = dataset.loaders(batch_size=self.batch_size, num_workers=self.n_jobs_dataloader)
|
||||
|
||||
# Set loss
|
||||
criterion = nn.MSELoss(reduction='none')
|
||||
|
||||
# Set device for network
|
||||
ae_net = ae_net.to(self.device)
|
||||
criterion = criterion.to(self.device)
|
||||
|
||||
# Testing
|
||||
logger.info('Testing autoencoder...')
|
||||
epoch_loss = 0.0
|
||||
n_batches = 0
|
||||
start_time = time.time()
|
||||
idx_label_score = []
|
||||
ae_net.eval()
|
||||
with torch.no_grad():
|
||||
for data in test_loader:
|
||||
inputs, labels, _, idx = data
|
||||
inputs, labels, idx = inputs.to(self.device), labels.to(self.device), idx.to(self.device)
|
||||
|
||||
rec = ae_net(inputs)
|
||||
rec_loss = criterion(rec, inputs)
|
||||
scores = torch.mean(rec_loss, dim=tuple(range(1, rec.dim())))
|
||||
|
||||
# Save triple of (idx, label, score) in a list
|
||||
idx_label_score += list(zip(idx.cpu().data.numpy().tolist(),
|
||||
labels.cpu().data.numpy().tolist(),
|
||||
scores.cpu().data.numpy().tolist()))
|
||||
|
||||
loss = torch.mean(rec_loss)
|
||||
epoch_loss += loss.item()
|
||||
n_batches += 1
|
||||
|
||||
self.test_time = time.time() - start_time
|
||||
|
||||
# Compute AUC
|
||||
_, labels, scores = zip(*idx_label_score)
|
||||
labels = np.array(labels)
|
||||
scores = np.array(scores)
|
||||
self.test_auc = roc_auc_score(labels, scores)
|
||||
|
||||
# Log results
|
||||
logger.info('Test Loss: {:.6f}'.format(epoch_loss / n_batches))
|
||||
logger.info('Test AUC: {:.2f}%'.format(100. * self.test_auc))
|
||||
logger.info('Test Time: {:.3f}s'.format(self.test_time))
|
||||
logger.info('Finished testing autoencoder.')
|
||||
139
Deep-SAD-PyTorch/src/optim/vae_trainer.py
Normal file
139
Deep-SAD-PyTorch/src/optim/vae_trainer.py
Normal file
@@ -0,0 +1,139 @@
|
||||
from base.base_trainer import BaseTrainer
|
||||
from base.base_dataset import BaseADDataset
|
||||
from base.base_net import BaseNet
|
||||
from utils.misc import binary_cross_entropy
|
||||
from sklearn.metrics import roc_auc_score
|
||||
|
||||
import logging
|
||||
import time
|
||||
import torch
|
||||
import torch.optim as optim
|
||||
import numpy as np
|
||||
|
||||
|
||||
class VAETrainer(BaseTrainer):
|
||||
|
||||
def __init__(self, optimizer_name: str = 'adam', lr: float = 0.001, n_epochs: int = 150, lr_milestones: tuple = (),
|
||||
batch_size: int = 128, weight_decay: float = 1e-6, device: str = 'cuda', n_jobs_dataloader: int = 0):
|
||||
super().__init__(optimizer_name, lr, n_epochs, lr_milestones, batch_size, weight_decay, device,
|
||||
n_jobs_dataloader)
|
||||
|
||||
# Results
|
||||
self.train_time = None
|
||||
self.test_auc = None
|
||||
self.test_time = None
|
||||
|
||||
def train(self, dataset: BaseADDataset, vae: BaseNet):
|
||||
logger = logging.getLogger()
|
||||
|
||||
# Get train data loader
|
||||
train_loader, _ = dataset.loaders(batch_size=self.batch_size, num_workers=self.n_jobs_dataloader)
|
||||
|
||||
# Set device
|
||||
vae = vae.to(self.device)
|
||||
|
||||
# Set optimizer (Adam optimizer for now)
|
||||
optimizer = optim.Adam(vae.parameters(), lr=self.lr, weight_decay=self.weight_decay)
|
||||
|
||||
# Set learning rate scheduler
|
||||
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=self.lr_milestones, gamma=0.1)
|
||||
|
||||
# Training
|
||||
logger.info('Starting pretraining...')
|
||||
start_time = time.time()
|
||||
vae.train()
|
||||
for epoch in range(self.n_epochs):
|
||||
|
||||
scheduler.step()
|
||||
if epoch in self.lr_milestones:
|
||||
logger.info(' LR scheduler: new learning rate is %g' % float(scheduler.get_lr()[0]))
|
||||
|
||||
epoch_loss = 0.0
|
||||
n_batches = 0
|
||||
epoch_start_time = time.time()
|
||||
for data in train_loader:
|
||||
inputs, _, _, _ = data
|
||||
inputs = inputs.to(self.device)
|
||||
inputs = inputs.view(inputs.size(0), -1)
|
||||
|
||||
# Zero the network parameter gradients
|
||||
optimizer.zero_grad()
|
||||
|
||||
# Update network parameters via backpropagation: forward + backward + optimize
|
||||
rec = vae(inputs)
|
||||
|
||||
likelihood = -binary_cross_entropy(rec, inputs)
|
||||
elbo = likelihood - vae.kl_divergence
|
||||
|
||||
# Overall loss
|
||||
loss = -torch.mean(elbo)
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
epoch_loss += loss.item()
|
||||
n_batches += 1
|
||||
|
||||
# log epoch statistics
|
||||
epoch_train_time = time.time() - epoch_start_time
|
||||
logger.info(f'| Epoch: {epoch + 1:03}/{self.n_epochs:03} | Train Time: {epoch_train_time:.3f}s '
|
||||
f'| Train Loss: {epoch_loss / n_batches:.6f} |')
|
||||
|
||||
self.train_time = time.time() - start_time
|
||||
logger.info('Pretraining Time: {:.3f}s'.format(self.train_time))
|
||||
logger.info('Finished pretraining.')
|
||||
|
||||
return vae
|
||||
|
||||
def test(self, dataset: BaseADDataset, vae: BaseNet):
|
||||
logger = logging.getLogger()
|
||||
|
||||
# Get test data loader
|
||||
_, test_loader = dataset.loaders(batch_size=self.batch_size, num_workers=self.n_jobs_dataloader)
|
||||
|
||||
# Set device
|
||||
vae = vae.to(self.device)
|
||||
|
||||
# Testing
|
||||
logger.info('Starting testing...')
|
||||
epoch_loss = 0.0
|
||||
n_batches = 0
|
||||
start_time = time.time()
|
||||
idx_label_score = []
|
||||
vae.eval()
|
||||
with torch.no_grad():
|
||||
for data in test_loader:
|
||||
inputs, labels, _, idx = data
|
||||
inputs, labels, idx = inputs.to(self.device), labels.to(self.device), idx.to(self.device)
|
||||
|
||||
inputs = inputs.view(inputs.size(0), -1)
|
||||
|
||||
rec = vae(inputs)
|
||||
likelihood = -binary_cross_entropy(rec, inputs)
|
||||
scores = -likelihood # negative likelihood as anomaly score
|
||||
|
||||
# Save triple of (idx, label, score) in a list
|
||||
idx_label_score += list(zip(idx.cpu().data.numpy().tolist(),
|
||||
labels.cpu().data.numpy().tolist(),
|
||||
scores.cpu().data.numpy().tolist()))
|
||||
|
||||
# Overall loss
|
||||
elbo = likelihood - vae.kl_divergence
|
||||
loss = -torch.mean(elbo)
|
||||
|
||||
epoch_loss += loss.item()
|
||||
n_batches += 1
|
||||
|
||||
self.test_time = time.time() - start_time
|
||||
|
||||
# Compute AUC
|
||||
_, labels, scores = zip(*idx_label_score)
|
||||
labels = np.array(labels)
|
||||
scores = np.array(scores)
|
||||
self.test_auc = roc_auc_score(labels, scores)
|
||||
|
||||
# Log results
|
||||
logger.info('Test Loss: {:.6f}'.format(epoch_loss / n_batches))
|
||||
logger.info('Test AUC: {:.2f}%'.format(100. * self.test_auc))
|
||||
logger.info('Test Time: {:.3f}s'.format(self.test_time))
|
||||
logger.info('Finished testing variational autoencoder.')
|
||||
93
Deep-SAD-PyTorch/src/optim/variational.py
Normal file
93
Deep-SAD-PyTorch/src/optim/variational.py
Normal file
@@ -0,0 +1,93 @@
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from torch import nn
|
||||
from itertools import repeat
|
||||
from utils import enumerate_discrete, log_sum_exp
|
||||
from networks import log_standard_categorical
|
||||
|
||||
|
||||
# Acknowledgements: https://github.com/wohlert/semi-supervised-pytorch
|
||||
class ImportanceWeightedSampler(object):
|
||||
"""
|
||||
Importance weighted sampler (Burda et al., 2015) to be used together with SVI.
|
||||
|
||||
:param mc: number of Monte Carlo samples
|
||||
:param iw: number of Importance Weighted samples
|
||||
"""
|
||||
|
||||
def __init__(self, mc=1, iw=1):
|
||||
self.mc = mc
|
||||
self.iw = iw
|
||||
|
||||
def resample(self, x):
|
||||
return x.repeat(self.mc * self.iw, 1)
|
||||
|
||||
def __call__(self, elbo):
|
||||
elbo = elbo.view(self.mc, self.iw, -1)
|
||||
elbo = torch.mean(log_sum_exp(elbo, dim=1, sum_op=torch.mean), dim=0)
|
||||
return elbo.view(-1)
|
||||
|
||||
|
||||
class SVI(nn.Module):
|
||||
"""
|
||||
Stochastic variational inference (SVI) optimizer for semi-supervised learning.
|
||||
|
||||
:param model: semi-supervised model to evaluate
|
||||
:param likelihood: p(x|y,z) for example BCE or MSE
|
||||
:param beta: warm-up/scaling of KL-term
|
||||
:param sampler: sampler for x and y, e.g. for Monte Carlo
|
||||
"""
|
||||
|
||||
base_sampler = ImportanceWeightedSampler(mc=1, iw=1)
|
||||
|
||||
def __init__(self, model, likelihood=F.binary_cross_entropy, beta=repeat(1), sampler=base_sampler):
|
||||
super(SVI, self).__init__()
|
||||
self.model = model
|
||||
self.likelihood = likelihood
|
||||
self.sampler = sampler
|
||||
self.beta = beta
|
||||
|
||||
def forward(self, x, y=None):
|
||||
is_labeled = False if y is None else True
|
||||
|
||||
# Prepare for sampling
|
||||
xs, ys = (x, y)
|
||||
|
||||
# Enumerate choices of label
|
||||
if not is_labeled:
|
||||
ys = enumerate_discrete(xs, self.model.y_dim)
|
||||
xs = xs.repeat(self.model.y_dim, 1)
|
||||
|
||||
# Increase sampling dimension
|
||||
xs = self.sampler.resample(xs)
|
||||
ys = self.sampler.resample(ys)
|
||||
|
||||
reconstruction = self.model(xs, ys)
|
||||
|
||||
# p(x|y,z)
|
||||
likelihood = -self.likelihood(reconstruction, xs)
|
||||
|
||||
# p(y)
|
||||
prior = -log_standard_categorical(ys)
|
||||
|
||||
# Equivalent to -L(x, y)
|
||||
elbo = likelihood + prior - next(self.beta) * self.model.kl_divergence
|
||||
L = self.sampler(elbo)
|
||||
|
||||
if is_labeled:
|
||||
return torch.mean(L)
|
||||
|
||||
logits = self.model.classify(x)
|
||||
|
||||
L = L.view_as(logits.t()).t()
|
||||
|
||||
# Calculate entropy H(q(y|x)) and sum over all labels
|
||||
eps = 1e-8
|
||||
H = -torch.sum(torch.mul(logits, torch.log(logits + eps)), dim=-1)
|
||||
L = torch.sum(torch.mul(logits, L), dim=-1)
|
||||
|
||||
# Equivalent to -U(x)
|
||||
U = L + H
|
||||
|
||||
return torch.mean(U)
|
||||
Reference in New Issue
Block a user