ocsvm working

This commit is contained in:
Jan Kowalczyk
2025-06-13 10:24:54 +02:00
parent d88719e718
commit 9298dea329
6 changed files with 376 additions and 137 deletions

View File

@@ -27,9 +27,11 @@ class DeepSAD(object):
ae_results: A dictionary to save the autoencoder results. ae_results: A dictionary to save the autoencoder results.
""" """
def __init__(self, eta: float = 1.0): def __init__(self, rep_dim: int, eta: float = 1.0):
"""Inits DeepSAD with hyperparameter eta.""" """Inits DeepSAD with hyperparameter eta."""
self.rep_dim = rep_dim # representation dimension
self.eta = eta self.eta = eta
self.c = None # hypersphere center c self.c = None # hypersphere center c
@@ -89,10 +91,10 @@ class DeepSAD(object):
self.ae_results = {"train_time": None, "test_auc": None, "test_time": None} self.ae_results = {"train_time": None, "test_auc": None, "test_time": None}
def set_network(self, net_name, rep_dim=1024): def set_network(self, net_name):
"""Builds the neural network phi.""" """Builds the neural network phi."""
self.net_name = net_name self.net_name = net_name
self.net = build_network(net_name, rep_dim=rep_dim) self.net = build_network(net_name, self.rep_dim)
def train( def train(
self, self,
@@ -240,7 +242,7 @@ class DeepSAD(object):
"""Pretrains the weights for the Deep SAD network phi via autoencoder.""" """Pretrains the weights for the Deep SAD network phi via autoencoder."""
# Set autoencoder network # Set autoencoder network
self.ae_net = build_autoencoder(self.net_name) self.ae_net = build_autoencoder(self.net_name, self.rep_dim)
# Train # Train
self.ae_optimizer_name = optimizer_name self.ae_optimizer_name = optimizer_name
@@ -340,7 +342,7 @@ class DeepSAD(object):
# json.dump(self.results, fp) # json.dump(self.results, fp)
pickle.dump(self.results, fp) pickle.dump(self.results, fp)
def save_ae_results(self, export_json): def save_ae_results(self, export_pkl):
"""Save autoencoder results dict to a JSON-file.""" """Save autoencoder results dict to a JSON-file."""
with open(export_json, "w") as fp: with open(export_pkl, "wb") as fp:
json.dump(self.ae_results, fp) pickle.dump(self.ae_results, fp)

View File

@@ -35,3 +35,5 @@ class BaseNet(nn.Module):
self.logger.info( self.logger.info(
torchscan.summary(self, self.input_dim, receptive_field=receptive_field) torchscan.summary(self, self.input_dim, receptive_field=receptive_field)
) )
module_info = torchscan.crawl_module(self, self.input_dim)
pass

View File

@@ -1,4 +1,3 @@
import json
import logging import logging
import pickle import pickle
import time import time
@@ -20,7 +19,7 @@ from networks.main import build_autoencoder
class OCSVM(object): class OCSVM(object):
"""A class for One-Class SVM models.""" """A class for One-Class SVM models."""
def __init__(self, kernel="rbf", nu=0.1, hybrid=False): def __init__(self, kernel="rbf", nu=0.1, hybrid=False, latent_space_dim=128):
"""Init OCSVM instance.""" """Init OCSVM instance."""
self.kernel = kernel self.kernel = kernel
self.nu = nu self.nu = nu
@@ -30,6 +29,7 @@ class OCSVM(object):
self.model = OneClassSVM(kernel=kernel, nu=nu, verbose=True, max_mem_size=4048) self.model = OneClassSVM(kernel=kernel, nu=nu, verbose=True, max_mem_size=4048)
self.hybrid = hybrid self.hybrid = hybrid
self.latent_space_dim = latent_space_dim
self.ae_net = None # autoencoder network for the case of a hybrid model self.ae_net = None # autoencoder network for the case of a hybrid model
self.linear_model = ( self.linear_model = (
None # also init a model with linear kernel if hybrid approach None # also init a model with linear kernel if hybrid approach
@@ -38,8 +38,16 @@ class OCSVM(object):
self.results = { self.results = {
"train_time": None, "train_time": None,
"test_time": None, "test_time": None,
"test_auc": None, "test_auc_exp_based": None,
"test_scores": None, "test_roc_exp_based": None,
"test_prc_exp_based": None,
"test_ap_exp_based": None,
"test_scores_exp_based": None,
"test_auc_manual_based": None,
"test_roc_manual_based": None,
"test_prc_manual_based": None,
"test_ap_manual_based": None,
"test_scores_manual_based": None,
"train_time_linear": None, "train_time_linear": None,
"test_time_linear": None, "test_time_linear": None,
"test_auc_linear": None, "test_auc_linear": None,
@@ -70,15 +78,11 @@ class OCSVM(object):
# Get data from loader # Get data from loader
X = () X = ()
for data in train_loader: for data in train_loader:
inputs, _, _, _, _ = data inputs, _, _, _, _, _ = data # Updated unpacking
inputs = inputs.to(device) inputs = inputs.to(device)
if self.hybrid: if self.hybrid:
inputs = self.ae_net.encoder( inputs = self.ae_net.encoder(inputs)
inputs X_batch = inputs.view(inputs.size(0), -1)
) # in hybrid approach, take code representation of AE as features
X_batch = inputs.view(
inputs.size(0), -1
) # X_batch.shape = (batch_size, n_channels * height * width)
X += (X_batch.cpu().data.numpy(),) X += (X_batch.cpu().data.numpy(),)
X = np.concatenate(X) X = np.concatenate(X)
@@ -101,40 +105,59 @@ class OCSVM(object):
batch_size=batch_size, num_workers=n_jobs_dataloader batch_size=batch_size, num_workers=n_jobs_dataloader
) )
# Sample hold-out set from test set
X_test = () X_test = ()
labels = [] labels_exp = []
labels_manual = []
for data in test_loader: for data in test_loader:
inputs, label_batch, _, _, _ = data inputs, label_exp, label_manual, _, _, _ = data # Updated unpacking
inputs, label_batch = inputs.to(device), label_batch.to(device) inputs = inputs.to(device)
label_exp = label_exp.to(device)
label_manual = label_manual.to(device)
if self.hybrid: if self.hybrid:
inputs = self.ae_net.encoder( inputs = self.ae_net.encoder(inputs)
inputs X_batch = inputs.view(inputs.size(0), -1)
) # in hybrid approach, take code representation of AE as features
X_batch = inputs.view(
inputs.size(0), -1
) # X_batch.shape = (batch_size, n_channels * height * width)
X_test += (X_batch.cpu().data.numpy(),) X_test += (X_batch.cpu().data.numpy(),)
labels += label_batch.cpu().data.numpy().astype(np.int64).tolist() labels_exp += label_exp.cpu().data.numpy().astype(np.int64).tolist()
X_test, labels = np.concatenate(X_test), np.array(labels) labels_manual += label_manual.cpu().data.numpy().astype(np.int64).tolist()
n_test, n_normal, n_outlier = (
len(X_test), X_test = np.concatenate(X_test)
np.sum(labels == 0), labels_exp = np.array(labels_exp)
np.sum(labels == 1), labels_manual = np.array(labels_manual)
)
n_val = int(0.1 * n_test) # Use experiment-based labels for model selection (could also use manual-based)
n_val_normal, n_val_outlier = ( labels = labels_exp
int(n_val * (n_normal / n_test)),
int(n_val * (n_outlier / n_test)), # Count samples for validation split (-1: anomaly, 1: normal, 0: unknown)
) n_test = len(X_test)
perm = np.random.permutation(n_test) n_normal = np.sum(labels == 1)
n_outlier = np.sum(labels == -1)
n_val = int(0.1 * n_test) # Use 10% of test data for validation
# Only consider labeled samples for validation
valid_mask = labels != 0
X_test_valid = X_test[valid_mask]
labels_valid = labels[valid_mask]
# Calculate validation split sizes
n_val_normal = int(n_val * (n_normal / (n_normal + n_outlier)))
n_val_outlier = int(n_val * (n_outlier / (n_normal + n_outlier)))
# Create validation set with balanced normal/anomaly ratio
perm = np.random.permutation(len(X_test_valid))
X_val = np.concatenate( X_val = np.concatenate(
( (
X_test[perm][labels[perm] == 0][:n_val_normal], X_test_valid[perm][labels_valid[perm] == 1][:n_val_normal],
X_test[perm][labels[perm] == 1][:n_val_outlier], X_test_valid[perm][labels_valid[perm] == -1][:n_val_outlier],
) )
) )
labels = np.array([0] * n_val_normal + [1] * n_val_outlier) val_labels = np.array(
[0] * n_val_normal + [1] * n_val_outlier
) # Convert to binary (0: normal, 1: anomaly)
# Model selection loop
i = 1 i = 1
for gamma in gammas: for gamma in gammas:
# Model candidate # Model candidate
@@ -155,12 +178,12 @@ class OCSVM(object):
scores = (-1.0) * model.decision_function(X_val) scores = (-1.0) * model.decision_function(X_val)
scores = scores.flatten() scores = scores.flatten()
# Compute AUC # Compute AUC with binary labels
auc = roc_auc_score(labels, scores) auc = roc_auc_score(val_labels, scores)
logger.info( logger.info(
f" | Model {i:02}/{len(gammas):02} | Gamma: {gamma:.8f} | Train Time: {train_time:.3f}s " f" | Model {i:02}/{len(gammas):02} | Gamma: {gamma:.8f} | Train Time: {train_time:.3f}s "
f"| Val AUC: {100. * auc:.2f} |" f"| Val AUC: {100.0 * auc:.2f} |"
) )
if auc > best_auc: if auc > best_auc:
@@ -182,7 +205,7 @@ class OCSVM(object):
self.results["train_time_linear"] = train_time self.results["train_time_linear"] = train_time
logger.info( logger.info(
f"Best Model: | Gamma: {self.gamma:.8f} | AUC: {100. * best_auc:.2f}" f"Best Model: | Gamma: {self.gamma:.8f} | AUC: {100.0 * best_auc:.2f}"
) )
logger.info("Training Time: {:.3f}s".format(self.results["train_time"])) logger.info("Training Time: {:.3f}s".format(self.results["train_time"]))
logger.info("Finished training.") logger.info("Finished training.")
@@ -210,51 +233,121 @@ class OCSVM(object):
) )
# Get data from loader # Get data from loader
idx_label_score = [] idx_label_score_exp = []
idx_label_score_manual = []
X = () X = ()
idxs = [] idxs = []
labels = [] labels_exp = []
labels_manual = []
for data in test_loader: for data in test_loader:
inputs, label_batch, _, idx, _ = data inputs, label_exp, label_manual, _, idx, _ = data # Updated unpacking
inputs, label_batch, idx = ( inputs, label_exp, label_manual, idx = (
inputs.to(device), inputs.to(device),
label_batch.to(device), label_exp.to(device),
label_manual.to(device),
idx.to(device), idx.to(device),
) )
if self.hybrid: if self.hybrid:
inputs = self.ae_net.encoder( inputs = self.ae_net.encoder(inputs)
inputs X_batch = inputs.view(inputs.size(0), -1)
) # in hybrid approach, take code representation of AE as features
X_batch = inputs.view(
inputs.size(0), -1
) # X_batch.shape = (batch_size, n_channels * height * width)
X += (X_batch.cpu().data.numpy(),) X += (X_batch.cpu().data.numpy(),)
idxs += idx.cpu().data.numpy().astype(np.int64).tolist() idxs += idx.cpu().data.numpy().astype(np.int64).tolist()
labels += label_batch.cpu().data.numpy().astype(np.int64).tolist() labels_exp += label_exp.cpu().data.numpy().astype(np.int64).tolist()
labels_manual += label_manual.cpu().data.numpy().astype(np.int64).tolist()
X = np.concatenate(X) X = np.concatenate(X)
labels_exp = np.array(labels_exp)
labels_manual = np.array(labels_manual)
# Count and log label stats for exp_based
n_exp_normal = np.sum(labels_exp == 1)
n_exp_anomaly = np.sum(labels_exp == -1)
n_exp_unknown = np.sum(labels_exp == 0)
logger.info(
f"Exp-based labels: normal(1)={n_exp_normal}, "
f"anomaly(-1)={n_exp_anomaly}, unknown(0)={n_exp_unknown}"
)
# Count and log label stats for manual_based
n_manual_normal = np.sum(labels_manual == 1)
n_manual_anomaly = np.sum(labels_manual == -1)
n_manual_unknown = np.sum(labels_manual == 0)
logger.info(
f"Manual-based labels: normal(1)={n_manual_normal}, "
f"anomaly(-1)={n_manual_anomaly}, unknown(0)={n_manual_unknown}"
)
# Testing # Testing
logger.info("Starting testing...") logger.info("Starting testing...")
start_time = time.time() start_time = time.time()
scores = (-1.0) * self.model.decision_function(X) scores = (-1.0) * self.model.decision_function(X)
self.results["test_time"] = time.time() - start_time self.results["test_time"] = time.time() - start_time
scores = scores.flatten() scores = scores.flatten()
self.rho = -self.model.intercept_[0]
# Save triples of (idx, label, score) in a list # Save triples of (idx, label, score) for both label types
idx_label_score += list(zip(idxs, labels, scores.tolist())) idx_label_score_exp += list(zip(idxs, labels_exp.tolist(), scores.tolist()))
self.results["test_scores"] = idx_label_score idx_label_score_manual += list(
zip(idxs, labels_manual.tolist(), scores.tolist())
)
# Compute AUC self.results["test_scores_exp_based"] = idx_label_score_exp
_, labels, scores = zip(*idx_label_score) self.results["test_scores_manual_based"] = idx_label_score_manual
labels = np.array(labels)
scores = np.array(scores) # --- Evaluation for exp_based (only labeled samples) ---
self.results["test_auc"] = roc_auc_score(labels, scores) valid_mask_exp = labels_exp != 0
self.results["test_roc"] = roc_curve(labels, scores) if np.any(valid_mask_exp):
self.results["test_prc"] = precision_recall_curve(labels, scores) labels_exp_binary = (labels_exp[valid_mask_exp] == -1).astype(int)
self.results["test_ap"] = average_precision_score(labels, scores) scores_exp_valid = scores[valid_mask_exp]
self.results["test_auc_exp_based"] = roc_auc_score(
labels_exp_binary, scores_exp_valid
)
self.results["test_roc_exp_based"] = roc_curve(
labels_exp_binary, scores_exp_valid
)
self.results["test_prc_exp_based"] = precision_recall_curve(
labels_exp_binary, scores_exp_valid
)
self.results["test_ap_exp_based"] = average_precision_score(
labels_exp_binary, scores_exp_valid
)
logger.info(
"Test AUC (exp_based): {:.2f}%".format(
100.0 * self.results["test_auc_exp_based"]
)
)
else:
logger.info("Test AUC (exp_based): N/A (no labeled samples)")
# --- Evaluation for manual_based (only labeled samples) ---
valid_mask_manual = labels_manual != 0
if np.any(valid_mask_manual):
labels_manual_binary = (labels_manual[valid_mask_manual] == -1).astype(int)
scores_manual_valid = scores[valid_mask_manual]
self.results["test_auc_manual_based"] = roc_auc_score(
labels_manual_binary, scores_manual_valid
)
self.results["test_roc_manual_based"] = roc_curve(
labels_manual_binary, scores_manual_valid
)
self.results["test_prc_manual_based"] = precision_recall_curve(
labels_manual_binary, scores_manual_valid
)
self.results["test_ap_manual_based"] = average_precision_score(
labels_manual_binary, scores_manual_valid
)
logger.info(
"Test AUC (manual_based): {:.2f}%".format(
100.0 * self.results["test_auc_manual_based"]
)
)
else:
logger.info("Test AUC (manual_based): N/A (no labeled samples)")
# If hybrid, also test model with linear kernel # If hybrid, also test model with linear kernel
if self.hybrid: if self.hybrid:
@@ -262,35 +355,115 @@ class OCSVM(object):
scores_linear = (-1.0) * self.linear_model.decision_function(X) scores_linear = (-1.0) * self.linear_model.decision_function(X)
self.results["test_time_linear"] = time.time() - start_time self.results["test_time_linear"] = time.time() - start_time
scores_linear = scores_linear.flatten() scores_linear = scores_linear.flatten()
self.results["test_auc_linear"] = roc_auc_score(labels, scores_linear) # Save linear model results for both label types
# --- exp_based ---
valid_mask_exp_linear = labels_exp != 0
if np.any(valid_mask_exp_linear):
labels_exp_binary_linear = (
labels_exp[valid_mask_exp_linear] == -1
).astype(int)
scores_exp_linear_valid = scores_linear[valid_mask_exp_linear]
self.results["test_auc_linear_exp_based"] = roc_auc_score(
labels_exp_binary_linear, scores_exp_linear_valid
)
self.results["test_roc_linear_exp_based"] = roc_curve(
labels_exp_binary_linear, scores_exp_linear_valid
)
self.results["test_prc_linear_exp_based"] = precision_recall_curve(
labels_exp_binary_linear, scores_exp_linear_valid
)
self.results["test_ap_linear_exp_based"] = average_precision_score(
labels_exp_binary_linear, scores_exp_linear_valid
)
else:
self.results["test_auc_linear_exp_based"] = None
self.results["test_roc_linear_exp_based"] = None
self.results["test_prc_linear_exp_based"] = None
self.results["test_ap_linear_exp_based"] = None
# --- manual_based ---
valid_mask_manual_linear = labels_manual != 0
if np.any(valid_mask_manual_linear):
labels_manual_binary_linear = (
labels_manual[valid_mask_manual_linear] == -1
).astype(int)
scores_manual_linear_valid = scores_linear[valid_mask_manual_linear]
self.results["test_auc_linear_manual_based"] = roc_auc_score(
labels_manual_binary_linear, scores_manual_linear_valid
)
self.results["test_roc_linear_manual_based"] = roc_curve(
labels_manual_binary_linear, scores_manual_linear_valid
)
self.results["test_prc_linear_manual_based"] = precision_recall_curve(
labels_manual_binary_linear, scores_manual_linear_valid
)
self.results["test_ap_linear_manual_based"] = average_precision_score(
labels_manual_binary_linear, scores_manual_linear_valid
)
else:
self.results["test_auc_linear_manual_based"] = None
self.results["test_roc_linear_manual_based"] = None
self.results["test_prc_linear_manual_based"] = None
self.results["test_ap_linear_manual_based"] = None
# Log exp_based results for linear model
if self.results["test_auc_linear_exp_based"] is not None:
logger.info( logger.info(
"Test AUC linear model: {:.2f}%".format( "Test AUC linear model (exp_based): {:.2f}%".format(
100.0 * self.results["test_auc_linear"] 100.0 * self.results["test_auc_linear_exp_based"]
) )
) )
else:
logger.info(
"Test AUC linear model (exp_based): N/A (no labeled samples)"
)
# Log manual_based results for linear model
if self.results["test_auc_linear_manual_based"] is not None:
logger.info(
"Test AUC linear model (manual_based): {:.2f}%".format(
100.0 * self.results["test_auc_linear_manual_based"]
)
)
else:
logger.info(
"Test AUC linear model (manual_based): N/A (no labeled samples)"
)
logger.info( logger.info(
"Test Time linear model: {:.3f}s".format( "Test Time linear model: {:.3f}s".format(
self.results["test_time_linear"] self.results["test_time_linear"]
) )
) )
# Log results # Log results for both label types
logger.info("Test AUC: {:.2f}%".format(100.0 * self.results["test_auc"])) if self.results.get("test_auc_exp_based") is not None:
logger.info(
"Test AUC (exp_based): {:.2f}%".format(
100.0 * self.results["test_auc_exp_based"]
)
)
else:
logger.info("Test AUC (exp_based): N/A (no labeled samples)")
if self.results.get("test_auc_manual_based") is not None:
logger.info(
"Test AUC (manual_based): {:.2f}%".format(
100.0 * self.results["test_auc_manual_based"]
)
)
else:
logger.info("Test AUC (manual_based): N/A (no labeled samples)")
logger.info("Test Time: {:.3f}s".format(self.results["test_time"])) logger.info("Test Time: {:.3f}s".format(self.results["test_time"]))
logger.info("Finished testing.") logger.info("Finished testing.")
def load_ae(self, dataset_name, model_path): def load_ae(self, model_path, net_name, device="cpu"):
"""Load pretrained autoencoder from model_path for feature extraction in a hybrid OC-SVM model.""" """Load pretrained autoencoder from model_path for feature extraction in a hybrid OC-SVM model."""
model_dict = torch.load(model_path, map_location="cpu") model_dict = torch.load(model_path, map_location="cpu")
ae_net_dict = model_dict["ae_net_dict"] ae_net_dict = model_dict["ae_net_dict"]
if dataset_name in ["mnist", "fmnist", "cifar10"]:
net_name = dataset_name + "_LeNet"
else:
net_name = dataset_name + "_mlp"
if self.ae_net is None: if self.ae_net is None:
self.ae_net = build_autoencoder(net_name) self.ae_net = build_autoencoder(net_name, rep_dim=self.latent_space_dim)
# update keys (since there was a change in network definition) # update keys (since there was a change in network definition)
ae_keys = list(self.ae_net.state_dict().keys()) ae_keys = list(self.ae_net.state_dict().keys())
@@ -301,6 +474,8 @@ class OCSVM(object):
i += 1 i += 1
self.ae_net.load_state_dict(ae_net_dict) self.ae_net.load_state_dict(ae_net_dict)
if device != "cpu":
self.ae_net.to(torch.device(device))
self.ae_net.eval() self.ae_net.eval()
def save_model(self, export_path): def save_model(self, export_path):

View File

@@ -167,6 +167,12 @@ from utils.visualization.plot_images_grid import plot_images_grid
default=1e-6, default=1e-6,
help="Weight decay (L2 penalty) hyperparameter for Deep SAD objective.", help="Weight decay (L2 penalty) hyperparameter for Deep SAD objective.",
) )
@click.option(
"--latent_space_dim",
type=int,
default=128,
help="Dimensionality of the latent space for the autoencoder.",
)
@click.option( @click.option(
"--pretrain", "--pretrain",
type=bool, type=bool,
@@ -303,6 +309,7 @@ def main(
lr_milestone, lr_milestone,
batch_size, batch_size,
weight_decay, weight_decay,
latent_space_dim,
pretrain, pretrain,
ae_optimizer_name, ae_optimizer_name,
ae_lr, ae_lr,
@@ -415,7 +422,7 @@ def main(
train_passes = range(k_fold_num) if k_fold else [None] train_passes = range(k_fold_num) if k_fold else [None]
train_isoforest = True train_isoforest = True
train_ocsvm = False train_ocsvm = True
train_deepsad = True train_deepsad = True
for fold_idx in train_passes: for fold_idx in train_passes:
@@ -424,10 +431,6 @@ def main(
else: else:
logger.info(f"Fold {fold_idx + 1}/{k_fold_num}") logger.info(f"Fold {fold_idx + 1}/{k_fold_num}")
# Initialize OC-SVM model
if train_ocsvm:
ocsvm = OCSVM(kernel=ocsvm_kernel, nu=ocsvm_nu, hybrid=False)
# Initialize Isolation Forest model # Initialize Isolation Forest model
if train_isoforest: if train_isoforest:
Isoforest = IsoForest( Isoforest = IsoForest(
@@ -441,7 +444,7 @@ def main(
# Initialize DeepSAD model and set neural network phi # Initialize DeepSAD model and set neural network phi
if train_deepsad: if train_deepsad:
deepSAD = DeepSAD(cfg.settings["eta"]) deepSAD = DeepSAD(latent_space_dim, cfg.settings["eta"])
deepSAD.set_network(net_name) deepSAD.set_network(net_name)
# If specified, load Deep SAD model (center c, network weights, and possibly autoencoder weights) # If specified, load Deep SAD model (center c, network weights, and possibly autoencoder weights)
@@ -486,10 +489,31 @@ def main(
# Save pretraining results # Save pretraining results
if fold_idx is None: if fold_idx is None:
deepSAD.save_ae_results(export_json=xp_path + "/ae_results.json") deepSAD.save_ae_results(export_pkl=xp_path + "/ae_results.pkl")
ae_model_path = xp_path + "/ae_model.tar"
deepSAD.save_model(export_model=ae_model_path, save_ae=True)
else: else:
deepSAD.save_ae_results( deepSAD.save_ae_results(
export_json=xp_path + f"/ae_results_{fold_idx}.json" export_pkl=xp_path + f"/ae_results_{fold_idx}.pkl"
)
ae_model_path = xp_path + f"/ae_model_{fold_idx}.tar"
deepSAD.save_model(export_model=ae_model_path, save_ae=True)
# Initialize OC-SVM model (after pretraining to use autoencoder features)
if train_ocsvm:
ocsvm = OCSVM(
kernel=ocsvm_kernel,
nu=ocsvm_nu,
hybrid=True,
latent_space_dim=latent_space_dim,
)
if load_model and not pretrain:
ae_model_path = load_model
ocsvm.load_ae(
net_name=net_name, model_path=ae_model_path, device=device
)
logger.info(
f"Loaded pretrained autoencoder for features from {ae_model_path}."
) )
# Log training details # Log training details
@@ -525,7 +549,7 @@ def main(
device=device, device=device,
n_jobs_dataloader=n_jobs_dataloader, n_jobs_dataloader=n_jobs_dataloader,
k_fold_idx=fold_idx, k_fold_idx=fold_idx,
batch_size=8, batch_size=256,
) )
# Train model on dataset # Train model on dataset
@@ -553,7 +577,7 @@ def main(
device=device, device=device,
n_jobs_dataloader=n_jobs_dataloader, n_jobs_dataloader=n_jobs_dataloader,
k_fold_idx=fold_idx, k_fold_idx=fold_idx,
batch_size=8, batch_size=256,
) )
# Test model # Test model
@@ -730,7 +754,7 @@ def main(
logger.info("Known anomaly classes: %s" % (dataset.known_outlier_classes,)) logger.info("Known anomaly classes: %s" % (dataset.known_outlier_classes,))
# Initialize DeepSAD model and set neural network phi # Initialize DeepSAD model and set neural network phi
deepSAD = DeepSAD(cfg.settings["eta"]) deepSAD = DeepSAD(latent_space_dim, cfg.settings["eta"])
deepSAD.set_network(net_name) deepSAD.set_network(net_name)
# If specified, load Deep SAD model (center c, network weights, and possibly autoencoder weights) # If specified, load Deep SAD model (center c, network weights, and possibly autoencoder weights)
@@ -776,22 +800,39 @@ def main(
ratio_known_outlier, ratio_known_outlier,
ratio_pollution, ratio_pollution,
random_state=np.random.RandomState(cfg.settings["seed"]), random_state=np.random.RandomState(cfg.settings["seed"]),
k_fold_num=k_fold_num,
) )
# Dictionary to store results for each dimension # Set up k-fold passes
# ae_elbow_dims = [32, 64, 128, 256, 384, 512, 768, 1024] train_passes = range(k_fold_num) if k_fold else [None]
ae_elbow_dims = [32, 64]
elbow_results = {"dimensions": list(ae_elbow_dims), "ae_results": {}} # Test dimensions
ae_elbow_dims = [32, 64, 128, 256, 384, 512, 768, 1024]
# Test each dimension # Test each dimension
for rep_dim in ae_elbow_dims: for rep_dim in ae_elbow_dims:
logger.info(f"Testing autoencoder with latent dimension: {rep_dim}") logger.info(f"Testing autoencoder with latent dimension: {rep_dim}")
# Results dictionary for this dimension
dim_results = {
"dimension": rep_dim,
"ae_results": {},
"k_fold": k_fold,
"k_fold_num": k_fold_num,
}
# For each fold
for fold_idx in train_passes:
if fold_idx is None:
logger.info(f"Dimension {rep_dim}: Single training without k-fold")
else:
logger.info(
f"Dimension {rep_dim}: Fold {fold_idx + 1}/{k_fold_num}"
)
# Initialize DeepSAD model with current dimension # Initialize DeepSAD model with current dimension
deepSAD = DeepSAD(cfg.settings["eta"]) deepSAD = DeepSAD(rep_dim, cfg.settings["eta"])
deepSAD.set_network( deepSAD.set_network(net_name)
net_name, rep_dim=rep_dim
) # Pass rep_dim to network builder
# Pretrain autoencoder with current dimension # Pretrain autoencoder with current dimension
deepSAD.pretrain( deepSAD.pretrain(
@@ -804,24 +845,40 @@ def main(
weight_decay=cfg.settings["ae_weight_decay"], weight_decay=cfg.settings["ae_weight_decay"],
device=device, device=device,
n_jobs_dataloader=n_jobs_dataloader, n_jobs_dataloader=n_jobs_dataloader,
k_fold_idx=fold_idx,
) )
# Store results for this dimension # Store results for this fold
elbow_results["ae_results"][rep_dim] = deepSAD.ae_results fold_key = "single" if fold_idx is None else f"fold_{fold_idx}"
dim_results["ae_results"][fold_key] = deepSAD.ae_results
logger.info(f"Finished testing dimension {rep_dim}") logger.info(
f"Finished testing dimension {rep_dim} "
+ (
f"fold {fold_idx + 1}/{k_fold_num}"
if fold_idx is not None
else "single pass"
)
)
# Clear some memory # Clear some memory
del deepSAD del deepSAD
torch.cuda.empty_cache() torch.cuda.empty_cache()
# Save all results # Save results for this dimension (includes all folds)
results_path = Path(xp_path) / f"ae_elbow_results_{net_name}.pkl" results_filename = (
f"ae_elbow_results_{net_name}_dim_{rep_dim}"
+ ("_kfold" if k_fold else "")
+ ".pkl"
)
results_path = Path(xp_path) / results_filename
with open(results_path, "wb") as f: with open(results_path, "wb") as f:
pickle.dump(elbow_results, f) pickle.dump(dim_results, f)
logger.info(f"Saved elbow test results to {results_path}")
logger.info(
f"Saved elbow test results for dimension {rep_dim} to {results_path}"
)
else: else:
logger.error(f"Unknown action: {action}") logger.error(f"Unknown action: {action}")

View File

@@ -9,7 +9,7 @@ from .subter_LeNet_Split import SubTer_LeNet_Split, SubTer_LeNet_Split_Autoencod
from .vae import VariationalAutoencoder from .vae import VariationalAutoencoder
def build_network(net_name, ae_net=None, rep_dim=1024): def build_network(net_name, rep_dim, ae_net=None):
"""Builds the neural network.""" """Builds the neural network."""
implemented_networks = ( implemented_networks = (
@@ -129,7 +129,7 @@ def build_network(net_name, ae_net=None, rep_dim=1024):
return net return net
def build_autoencoder(net_name): def build_autoencoder(net_name, rep_dim):
"""Builds the corresponding autoencoder network.""" """Builds the corresponding autoencoder network."""
implemented_networks = ( implemented_networks = (
@@ -158,7 +158,7 @@ def build_autoencoder(net_name):
ae_net = MNIST_LeNet_Autoencoder() ae_net = MNIST_LeNet_Autoencoder()
if net_name == "subter_LeNet": if net_name == "subter_LeNet":
ae_net = SubTer_LeNet_Autoencoder() ae_net = SubTer_LeNet_Autoencoder(rep_dim=rep_dim)
if net_name == "subter_LeNet_Split": if net_name == "subter_LeNet_Split":
ae_net = SubTer_LeNet_Split_Autoencoder() ae_net = SubTer_LeNet_Split_Autoencoder()

View File

@@ -85,6 +85,7 @@ class AETrainer(BaseTrainer):
logger.info("Starting pretraining...") logger.info("Starting pretraining...")
start_time = time.time() start_time = time.time()
ae_net.train() ae_net.train()
ae_net.summary(receptive_field=True) # Add network summary before training
for epoch in range(self.n_epochs): for epoch in range(self.n_epochs):
epoch_loss = 0.0 epoch_loss = 0.0
@@ -197,6 +198,8 @@ class AETrainer(BaseTrainer):
n_batches = 0 n_batches = 0
start_time = time.time() start_time = time.time()
ae_net.eval() ae_net.eval()
ae_net.summary(receptive_field=True) # Add network summary before testing
with torch.no_grad(): with torch.no_grad():
for data in test_loader: for data in test_loader:
( (