ocsvm working
This commit is contained in:
@@ -27,9 +27,11 @@ class DeepSAD(object):
|
||||
ae_results: A dictionary to save the autoencoder results.
|
||||
"""
|
||||
|
||||
def __init__(self, eta: float = 1.0):
|
||||
def __init__(self, rep_dim: int, eta: float = 1.0):
|
||||
"""Inits DeepSAD with hyperparameter eta."""
|
||||
|
||||
self.rep_dim = rep_dim # representation dimension
|
||||
|
||||
self.eta = eta
|
||||
self.c = None # hypersphere center c
|
||||
|
||||
@@ -89,10 +91,10 @@ class DeepSAD(object):
|
||||
|
||||
self.ae_results = {"train_time": None, "test_auc": None, "test_time": None}
|
||||
|
||||
def set_network(self, net_name, rep_dim=1024):
|
||||
def set_network(self, net_name):
|
||||
"""Builds the neural network phi."""
|
||||
self.net_name = net_name
|
||||
self.net = build_network(net_name, rep_dim=rep_dim)
|
||||
self.net = build_network(net_name, self.rep_dim)
|
||||
|
||||
def train(
|
||||
self,
|
||||
@@ -240,7 +242,7 @@ class DeepSAD(object):
|
||||
"""Pretrains the weights for the Deep SAD network phi via autoencoder."""
|
||||
|
||||
# Set autoencoder network
|
||||
self.ae_net = build_autoencoder(self.net_name)
|
||||
self.ae_net = build_autoencoder(self.net_name, self.rep_dim)
|
||||
|
||||
# Train
|
||||
self.ae_optimizer_name = optimizer_name
|
||||
@@ -340,7 +342,7 @@ class DeepSAD(object):
|
||||
# json.dump(self.results, fp)
|
||||
pickle.dump(self.results, fp)
|
||||
|
||||
def save_ae_results(self, export_json):
|
||||
def save_ae_results(self, export_pkl):
|
||||
"""Save autoencoder results dict to a JSON-file."""
|
||||
with open(export_json, "w") as fp:
|
||||
json.dump(self.ae_results, fp)
|
||||
with open(export_pkl, "wb") as fp:
|
||||
pickle.dump(self.ae_results, fp)
|
||||
|
||||
@@ -35,3 +35,5 @@ class BaseNet(nn.Module):
|
||||
self.logger.info(
|
||||
torchscan.summary(self, self.input_dim, receptive_field=receptive_field)
|
||||
)
|
||||
module_info = torchscan.crawl_module(self, self.input_dim)
|
||||
pass
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
import json
|
||||
import logging
|
||||
import pickle
|
||||
import time
|
||||
@@ -20,7 +19,7 @@ from networks.main import build_autoencoder
|
||||
class OCSVM(object):
|
||||
"""A class for One-Class SVM models."""
|
||||
|
||||
def __init__(self, kernel="rbf", nu=0.1, hybrid=False):
|
||||
def __init__(self, kernel="rbf", nu=0.1, hybrid=False, latent_space_dim=128):
|
||||
"""Init OCSVM instance."""
|
||||
self.kernel = kernel
|
||||
self.nu = nu
|
||||
@@ -30,6 +29,7 @@ class OCSVM(object):
|
||||
self.model = OneClassSVM(kernel=kernel, nu=nu, verbose=True, max_mem_size=4048)
|
||||
|
||||
self.hybrid = hybrid
|
||||
self.latent_space_dim = latent_space_dim
|
||||
self.ae_net = None # autoencoder network for the case of a hybrid model
|
||||
self.linear_model = (
|
||||
None # also init a model with linear kernel if hybrid approach
|
||||
@@ -38,8 +38,16 @@ class OCSVM(object):
|
||||
self.results = {
|
||||
"train_time": None,
|
||||
"test_time": None,
|
||||
"test_auc": None,
|
||||
"test_scores": None,
|
||||
"test_auc_exp_based": None,
|
||||
"test_roc_exp_based": None,
|
||||
"test_prc_exp_based": None,
|
||||
"test_ap_exp_based": None,
|
||||
"test_scores_exp_based": None,
|
||||
"test_auc_manual_based": None,
|
||||
"test_roc_manual_based": None,
|
||||
"test_prc_manual_based": None,
|
||||
"test_ap_manual_based": None,
|
||||
"test_scores_manual_based": None,
|
||||
"train_time_linear": None,
|
||||
"test_time_linear": None,
|
||||
"test_auc_linear": None,
|
||||
@@ -70,15 +78,11 @@ class OCSVM(object):
|
||||
# Get data from loader
|
||||
X = ()
|
||||
for data in train_loader:
|
||||
inputs, _, _, _, _ = data
|
||||
inputs, _, _, _, _, _ = data # Updated unpacking
|
||||
inputs = inputs.to(device)
|
||||
if self.hybrid:
|
||||
inputs = self.ae_net.encoder(
|
||||
inputs
|
||||
) # in hybrid approach, take code representation of AE as features
|
||||
X_batch = inputs.view(
|
||||
inputs.size(0), -1
|
||||
) # X_batch.shape = (batch_size, n_channels * height * width)
|
||||
inputs = self.ae_net.encoder(inputs)
|
||||
X_batch = inputs.view(inputs.size(0), -1)
|
||||
X += (X_batch.cpu().data.numpy(),)
|
||||
X = np.concatenate(X)
|
||||
|
||||
@@ -101,40 +105,59 @@ class OCSVM(object):
|
||||
batch_size=batch_size, num_workers=n_jobs_dataloader
|
||||
)
|
||||
|
||||
# Sample hold-out set from test set
|
||||
X_test = ()
|
||||
labels = []
|
||||
labels_exp = []
|
||||
labels_manual = []
|
||||
|
||||
for data in test_loader:
|
||||
inputs, label_batch, _, _, _ = data
|
||||
inputs, label_batch = inputs.to(device), label_batch.to(device)
|
||||
inputs, label_exp, label_manual, _, _, _ = data # Updated unpacking
|
||||
inputs = inputs.to(device)
|
||||
label_exp = label_exp.to(device)
|
||||
label_manual = label_manual.to(device)
|
||||
|
||||
if self.hybrid:
|
||||
inputs = self.ae_net.encoder(
|
||||
inputs
|
||||
) # in hybrid approach, take code representation of AE as features
|
||||
X_batch = inputs.view(
|
||||
inputs.size(0), -1
|
||||
) # X_batch.shape = (batch_size, n_channels * height * width)
|
||||
inputs = self.ae_net.encoder(inputs)
|
||||
X_batch = inputs.view(inputs.size(0), -1)
|
||||
X_test += (X_batch.cpu().data.numpy(),)
|
||||
labels += label_batch.cpu().data.numpy().astype(np.int64).tolist()
|
||||
X_test, labels = np.concatenate(X_test), np.array(labels)
|
||||
n_test, n_normal, n_outlier = (
|
||||
len(X_test),
|
||||
np.sum(labels == 0),
|
||||
np.sum(labels == 1),
|
||||
)
|
||||
n_val = int(0.1 * n_test)
|
||||
n_val_normal, n_val_outlier = (
|
||||
int(n_val * (n_normal / n_test)),
|
||||
int(n_val * (n_outlier / n_test)),
|
||||
)
|
||||
perm = np.random.permutation(n_test)
|
||||
labels_exp += label_exp.cpu().data.numpy().astype(np.int64).tolist()
|
||||
labels_manual += label_manual.cpu().data.numpy().astype(np.int64).tolist()
|
||||
|
||||
X_test = np.concatenate(X_test)
|
||||
labels_exp = np.array(labels_exp)
|
||||
labels_manual = np.array(labels_manual)
|
||||
|
||||
# Use experiment-based labels for model selection (could also use manual-based)
|
||||
labels = labels_exp
|
||||
|
||||
# Count samples for validation split (-1: anomaly, 1: normal, 0: unknown)
|
||||
n_test = len(X_test)
|
||||
n_normal = np.sum(labels == 1)
|
||||
n_outlier = np.sum(labels == -1)
|
||||
n_val = int(0.1 * n_test) # Use 10% of test data for validation
|
||||
|
||||
# Only consider labeled samples for validation
|
||||
valid_mask = labels != 0
|
||||
X_test_valid = X_test[valid_mask]
|
||||
labels_valid = labels[valid_mask]
|
||||
|
||||
# Calculate validation split sizes
|
||||
n_val_normal = int(n_val * (n_normal / (n_normal + n_outlier)))
|
||||
n_val_outlier = int(n_val * (n_outlier / (n_normal + n_outlier)))
|
||||
|
||||
# Create validation set with balanced normal/anomaly ratio
|
||||
perm = np.random.permutation(len(X_test_valid))
|
||||
X_val = np.concatenate(
|
||||
(
|
||||
X_test[perm][labels[perm] == 0][:n_val_normal],
|
||||
X_test[perm][labels[perm] == 1][:n_val_outlier],
|
||||
X_test_valid[perm][labels_valid[perm] == 1][:n_val_normal],
|
||||
X_test_valid[perm][labels_valid[perm] == -1][:n_val_outlier],
|
||||
)
|
||||
)
|
||||
labels = np.array([0] * n_val_normal + [1] * n_val_outlier)
|
||||
val_labels = np.array(
|
||||
[0] * n_val_normal + [1] * n_val_outlier
|
||||
) # Convert to binary (0: normal, 1: anomaly)
|
||||
|
||||
# Model selection loop
|
||||
i = 1
|
||||
for gamma in gammas:
|
||||
# Model candidate
|
||||
@@ -155,12 +178,12 @@ class OCSVM(object):
|
||||
scores = (-1.0) * model.decision_function(X_val)
|
||||
scores = scores.flatten()
|
||||
|
||||
# Compute AUC
|
||||
auc = roc_auc_score(labels, scores)
|
||||
# Compute AUC with binary labels
|
||||
auc = roc_auc_score(val_labels, scores)
|
||||
|
||||
logger.info(
|
||||
f" | Model {i:02}/{len(gammas):02} | Gamma: {gamma:.8f} | Train Time: {train_time:.3f}s "
|
||||
f"| Val AUC: {100. * auc:.2f} |"
|
||||
f"| Val AUC: {100.0 * auc:.2f} |"
|
||||
)
|
||||
|
||||
if auc > best_auc:
|
||||
@@ -182,7 +205,7 @@ class OCSVM(object):
|
||||
self.results["train_time_linear"] = train_time
|
||||
|
||||
logger.info(
|
||||
f"Best Model: | Gamma: {self.gamma:.8f} | AUC: {100. * best_auc:.2f}"
|
||||
f"Best Model: | Gamma: {self.gamma:.8f} | AUC: {100.0 * best_auc:.2f}"
|
||||
)
|
||||
logger.info("Training Time: {:.3f}s".format(self.results["train_time"]))
|
||||
logger.info("Finished training.")
|
||||
@@ -210,51 +233,121 @@ class OCSVM(object):
|
||||
)
|
||||
|
||||
# Get data from loader
|
||||
idx_label_score = []
|
||||
idx_label_score_exp = []
|
||||
idx_label_score_manual = []
|
||||
X = ()
|
||||
idxs = []
|
||||
labels = []
|
||||
labels_exp = []
|
||||
labels_manual = []
|
||||
|
||||
for data in test_loader:
|
||||
inputs, label_batch, _, idx, _ = data
|
||||
inputs, label_batch, idx = (
|
||||
inputs, label_exp, label_manual, _, idx, _ = data # Updated unpacking
|
||||
inputs, label_exp, label_manual, idx = (
|
||||
inputs.to(device),
|
||||
label_batch.to(device),
|
||||
label_exp.to(device),
|
||||
label_manual.to(device),
|
||||
idx.to(device),
|
||||
)
|
||||
|
||||
if self.hybrid:
|
||||
inputs = self.ae_net.encoder(
|
||||
inputs
|
||||
) # in hybrid approach, take code representation of AE as features
|
||||
X_batch = inputs.view(
|
||||
inputs.size(0), -1
|
||||
) # X_batch.shape = (batch_size, n_channels * height * width)
|
||||
inputs = self.ae_net.encoder(inputs)
|
||||
X_batch = inputs.view(inputs.size(0), -1)
|
||||
X += (X_batch.cpu().data.numpy(),)
|
||||
idxs += idx.cpu().data.numpy().astype(np.int64).tolist()
|
||||
labels += label_batch.cpu().data.numpy().astype(np.int64).tolist()
|
||||
labels_exp += label_exp.cpu().data.numpy().astype(np.int64).tolist()
|
||||
labels_manual += label_manual.cpu().data.numpy().astype(np.int64).tolist()
|
||||
|
||||
X = np.concatenate(X)
|
||||
labels_exp = np.array(labels_exp)
|
||||
labels_manual = np.array(labels_manual)
|
||||
|
||||
# Count and log label stats for exp_based
|
||||
n_exp_normal = np.sum(labels_exp == 1)
|
||||
n_exp_anomaly = np.sum(labels_exp == -1)
|
||||
n_exp_unknown = np.sum(labels_exp == 0)
|
||||
logger.info(
|
||||
f"Exp-based labels: normal(1)={n_exp_normal}, "
|
||||
f"anomaly(-1)={n_exp_anomaly}, unknown(0)={n_exp_unknown}"
|
||||
)
|
||||
|
||||
# Count and log label stats for manual_based
|
||||
n_manual_normal = np.sum(labels_manual == 1)
|
||||
n_manual_anomaly = np.sum(labels_manual == -1)
|
||||
n_manual_unknown = np.sum(labels_manual == 0)
|
||||
logger.info(
|
||||
f"Manual-based labels: normal(1)={n_manual_normal}, "
|
||||
f"anomaly(-1)={n_manual_anomaly}, unknown(0)={n_manual_unknown}"
|
||||
)
|
||||
|
||||
# Testing
|
||||
logger.info("Starting testing...")
|
||||
start_time = time.time()
|
||||
|
||||
scores = (-1.0) * self.model.decision_function(X)
|
||||
|
||||
self.results["test_time"] = time.time() - start_time
|
||||
scores = scores.flatten()
|
||||
self.rho = -self.model.intercept_[0]
|
||||
|
||||
# Save triples of (idx, label, score) in a list
|
||||
idx_label_score += list(zip(idxs, labels, scores.tolist()))
|
||||
self.results["test_scores"] = idx_label_score
|
||||
# Save triples of (idx, label, score) for both label types
|
||||
idx_label_score_exp += list(zip(idxs, labels_exp.tolist(), scores.tolist()))
|
||||
idx_label_score_manual += list(
|
||||
zip(idxs, labels_manual.tolist(), scores.tolist())
|
||||
)
|
||||
|
||||
# Compute AUC
|
||||
_, labels, scores = zip(*idx_label_score)
|
||||
labels = np.array(labels)
|
||||
scores = np.array(scores)
|
||||
self.results["test_auc"] = roc_auc_score(labels, scores)
|
||||
self.results["test_roc"] = roc_curve(labels, scores)
|
||||
self.results["test_prc"] = precision_recall_curve(labels, scores)
|
||||
self.results["test_ap"] = average_precision_score(labels, scores)
|
||||
self.results["test_scores_exp_based"] = idx_label_score_exp
|
||||
self.results["test_scores_manual_based"] = idx_label_score_manual
|
||||
|
||||
# --- Evaluation for exp_based (only labeled samples) ---
|
||||
valid_mask_exp = labels_exp != 0
|
||||
if np.any(valid_mask_exp):
|
||||
labels_exp_binary = (labels_exp[valid_mask_exp] == -1).astype(int)
|
||||
scores_exp_valid = scores[valid_mask_exp]
|
||||
|
||||
self.results["test_auc_exp_based"] = roc_auc_score(
|
||||
labels_exp_binary, scores_exp_valid
|
||||
)
|
||||
self.results["test_roc_exp_based"] = roc_curve(
|
||||
labels_exp_binary, scores_exp_valid
|
||||
)
|
||||
self.results["test_prc_exp_based"] = precision_recall_curve(
|
||||
labels_exp_binary, scores_exp_valid
|
||||
)
|
||||
self.results["test_ap_exp_based"] = average_precision_score(
|
||||
labels_exp_binary, scores_exp_valid
|
||||
)
|
||||
|
||||
logger.info(
|
||||
"Test AUC (exp_based): {:.2f}%".format(
|
||||
100.0 * self.results["test_auc_exp_based"]
|
||||
)
|
||||
)
|
||||
else:
|
||||
logger.info("Test AUC (exp_based): N/A (no labeled samples)")
|
||||
|
||||
# --- Evaluation for manual_based (only labeled samples) ---
|
||||
valid_mask_manual = labels_manual != 0
|
||||
if np.any(valid_mask_manual):
|
||||
labels_manual_binary = (labels_manual[valid_mask_manual] == -1).astype(int)
|
||||
scores_manual_valid = scores[valid_mask_manual]
|
||||
|
||||
self.results["test_auc_manual_based"] = roc_auc_score(
|
||||
labels_manual_binary, scores_manual_valid
|
||||
)
|
||||
self.results["test_roc_manual_based"] = roc_curve(
|
||||
labels_manual_binary, scores_manual_valid
|
||||
)
|
||||
self.results["test_prc_manual_based"] = precision_recall_curve(
|
||||
labels_manual_binary, scores_manual_valid
|
||||
)
|
||||
self.results["test_ap_manual_based"] = average_precision_score(
|
||||
labels_manual_binary, scores_manual_valid
|
||||
)
|
||||
|
||||
logger.info(
|
||||
"Test AUC (manual_based): {:.2f}%".format(
|
||||
100.0 * self.results["test_auc_manual_based"]
|
||||
)
|
||||
)
|
||||
else:
|
||||
logger.info("Test AUC (manual_based): N/A (no labeled samples)")
|
||||
|
||||
# If hybrid, also test model with linear kernel
|
||||
if self.hybrid:
|
||||
@@ -262,35 +355,115 @@ class OCSVM(object):
|
||||
scores_linear = (-1.0) * self.linear_model.decision_function(X)
|
||||
self.results["test_time_linear"] = time.time() - start_time
|
||||
scores_linear = scores_linear.flatten()
|
||||
self.results["test_auc_linear"] = roc_auc_score(labels, scores_linear)
|
||||
# Save linear model results for both label types
|
||||
# --- exp_based ---
|
||||
valid_mask_exp_linear = labels_exp != 0
|
||||
if np.any(valid_mask_exp_linear):
|
||||
labels_exp_binary_linear = (
|
||||
labels_exp[valid_mask_exp_linear] == -1
|
||||
).astype(int)
|
||||
scores_exp_linear_valid = scores_linear[valid_mask_exp_linear]
|
||||
self.results["test_auc_linear_exp_based"] = roc_auc_score(
|
||||
labels_exp_binary_linear, scores_exp_linear_valid
|
||||
)
|
||||
self.results["test_roc_linear_exp_based"] = roc_curve(
|
||||
labels_exp_binary_linear, scores_exp_linear_valid
|
||||
)
|
||||
self.results["test_prc_linear_exp_based"] = precision_recall_curve(
|
||||
labels_exp_binary_linear, scores_exp_linear_valid
|
||||
)
|
||||
self.results["test_ap_linear_exp_based"] = average_precision_score(
|
||||
labels_exp_binary_linear, scores_exp_linear_valid
|
||||
)
|
||||
else:
|
||||
self.results["test_auc_linear_exp_based"] = None
|
||||
self.results["test_roc_linear_exp_based"] = None
|
||||
self.results["test_prc_linear_exp_based"] = None
|
||||
self.results["test_ap_linear_exp_based"] = None
|
||||
|
||||
# --- manual_based ---
|
||||
valid_mask_manual_linear = labels_manual != 0
|
||||
if np.any(valid_mask_manual_linear):
|
||||
labels_manual_binary_linear = (
|
||||
labels_manual[valid_mask_manual_linear] == -1
|
||||
).astype(int)
|
||||
scores_manual_linear_valid = scores_linear[valid_mask_manual_linear]
|
||||
self.results["test_auc_linear_manual_based"] = roc_auc_score(
|
||||
labels_manual_binary_linear, scores_manual_linear_valid
|
||||
)
|
||||
self.results["test_roc_linear_manual_based"] = roc_curve(
|
||||
labels_manual_binary_linear, scores_manual_linear_valid
|
||||
)
|
||||
self.results["test_prc_linear_manual_based"] = precision_recall_curve(
|
||||
labels_manual_binary_linear, scores_manual_linear_valid
|
||||
)
|
||||
self.results["test_ap_linear_manual_based"] = average_precision_score(
|
||||
labels_manual_binary_linear, scores_manual_linear_valid
|
||||
)
|
||||
else:
|
||||
self.results["test_auc_linear_manual_based"] = None
|
||||
self.results["test_roc_linear_manual_based"] = None
|
||||
self.results["test_prc_linear_manual_based"] = None
|
||||
self.results["test_ap_linear_manual_based"] = None
|
||||
# Log exp_based results for linear model
|
||||
if self.results["test_auc_linear_exp_based"] is not None:
|
||||
logger.info(
|
||||
"Test AUC linear model: {:.2f}%".format(
|
||||
100.0 * self.results["test_auc_linear"]
|
||||
"Test AUC linear model (exp_based): {:.2f}%".format(
|
||||
100.0 * self.results["test_auc_linear_exp_based"]
|
||||
)
|
||||
)
|
||||
else:
|
||||
logger.info(
|
||||
"Test AUC linear model (exp_based): N/A (no labeled samples)"
|
||||
)
|
||||
|
||||
# Log manual_based results for linear model
|
||||
if self.results["test_auc_linear_manual_based"] is not None:
|
||||
logger.info(
|
||||
"Test AUC linear model (manual_based): {:.2f}%".format(
|
||||
100.0 * self.results["test_auc_linear_manual_based"]
|
||||
)
|
||||
)
|
||||
else:
|
||||
logger.info(
|
||||
"Test AUC linear model (manual_based): N/A (no labeled samples)"
|
||||
)
|
||||
|
||||
logger.info(
|
||||
"Test Time linear model: {:.3f}s".format(
|
||||
self.results["test_time_linear"]
|
||||
)
|
||||
)
|
||||
|
||||
# Log results
|
||||
logger.info("Test AUC: {:.2f}%".format(100.0 * self.results["test_auc"]))
|
||||
# Log results for both label types
|
||||
if self.results.get("test_auc_exp_based") is not None:
|
||||
logger.info(
|
||||
"Test AUC (exp_based): {:.2f}%".format(
|
||||
100.0 * self.results["test_auc_exp_based"]
|
||||
)
|
||||
)
|
||||
else:
|
||||
logger.info("Test AUC (exp_based): N/A (no labeled samples)")
|
||||
|
||||
if self.results.get("test_auc_manual_based") is not None:
|
||||
logger.info(
|
||||
"Test AUC (manual_based): {:.2f}%".format(
|
||||
100.0 * self.results["test_auc_manual_based"]
|
||||
)
|
||||
)
|
||||
else:
|
||||
logger.info("Test AUC (manual_based): N/A (no labeled samples)")
|
||||
logger.info("Test Time: {:.3f}s".format(self.results["test_time"]))
|
||||
logger.info("Finished testing.")
|
||||
|
||||
def load_ae(self, dataset_name, model_path):
|
||||
def load_ae(self, model_path, net_name, device="cpu"):
|
||||
"""Load pretrained autoencoder from model_path for feature extraction in a hybrid OC-SVM model."""
|
||||
|
||||
model_dict = torch.load(model_path, map_location="cpu")
|
||||
ae_net_dict = model_dict["ae_net_dict"]
|
||||
if dataset_name in ["mnist", "fmnist", "cifar10"]:
|
||||
net_name = dataset_name + "_LeNet"
|
||||
else:
|
||||
net_name = dataset_name + "_mlp"
|
||||
|
||||
if self.ae_net is None:
|
||||
self.ae_net = build_autoencoder(net_name)
|
||||
self.ae_net = build_autoencoder(net_name, rep_dim=self.latent_space_dim)
|
||||
|
||||
# update keys (since there was a change in network definition)
|
||||
ae_keys = list(self.ae_net.state_dict().keys())
|
||||
@@ -301,6 +474,8 @@ class OCSVM(object):
|
||||
i += 1
|
||||
|
||||
self.ae_net.load_state_dict(ae_net_dict)
|
||||
if device != "cpu":
|
||||
self.ae_net.to(torch.device(device))
|
||||
self.ae_net.eval()
|
||||
|
||||
def save_model(self, export_path):
|
||||
|
||||
@@ -167,6 +167,12 @@ from utils.visualization.plot_images_grid import plot_images_grid
|
||||
default=1e-6,
|
||||
help="Weight decay (L2 penalty) hyperparameter for Deep SAD objective.",
|
||||
)
|
||||
@click.option(
|
||||
"--latent_space_dim",
|
||||
type=int,
|
||||
default=128,
|
||||
help="Dimensionality of the latent space for the autoencoder.",
|
||||
)
|
||||
@click.option(
|
||||
"--pretrain",
|
||||
type=bool,
|
||||
@@ -303,6 +309,7 @@ def main(
|
||||
lr_milestone,
|
||||
batch_size,
|
||||
weight_decay,
|
||||
latent_space_dim,
|
||||
pretrain,
|
||||
ae_optimizer_name,
|
||||
ae_lr,
|
||||
@@ -415,7 +422,7 @@ def main(
|
||||
train_passes = range(k_fold_num) if k_fold else [None]
|
||||
|
||||
train_isoforest = True
|
||||
train_ocsvm = False
|
||||
train_ocsvm = True
|
||||
train_deepsad = True
|
||||
|
||||
for fold_idx in train_passes:
|
||||
@@ -424,10 +431,6 @@ def main(
|
||||
else:
|
||||
logger.info(f"Fold {fold_idx + 1}/{k_fold_num}")
|
||||
|
||||
# Initialize OC-SVM model
|
||||
if train_ocsvm:
|
||||
ocsvm = OCSVM(kernel=ocsvm_kernel, nu=ocsvm_nu, hybrid=False)
|
||||
|
||||
# Initialize Isolation Forest model
|
||||
if train_isoforest:
|
||||
Isoforest = IsoForest(
|
||||
@@ -441,7 +444,7 @@ def main(
|
||||
|
||||
# Initialize DeepSAD model and set neural network phi
|
||||
if train_deepsad:
|
||||
deepSAD = DeepSAD(cfg.settings["eta"])
|
||||
deepSAD = DeepSAD(latent_space_dim, cfg.settings["eta"])
|
||||
deepSAD.set_network(net_name)
|
||||
|
||||
# If specified, load Deep SAD model (center c, network weights, and possibly autoencoder weights)
|
||||
@@ -486,10 +489,31 @@ def main(
|
||||
|
||||
# Save pretraining results
|
||||
if fold_idx is None:
|
||||
deepSAD.save_ae_results(export_json=xp_path + "/ae_results.json")
|
||||
deepSAD.save_ae_results(export_pkl=xp_path + "/ae_results.pkl")
|
||||
ae_model_path = xp_path + "/ae_model.tar"
|
||||
deepSAD.save_model(export_model=ae_model_path, save_ae=True)
|
||||
else:
|
||||
deepSAD.save_ae_results(
|
||||
export_json=xp_path + f"/ae_results_{fold_idx}.json"
|
||||
export_pkl=xp_path + f"/ae_results_{fold_idx}.pkl"
|
||||
)
|
||||
ae_model_path = xp_path + f"/ae_model_{fold_idx}.tar"
|
||||
deepSAD.save_model(export_model=ae_model_path, save_ae=True)
|
||||
|
||||
# Initialize OC-SVM model (after pretraining to use autoencoder features)
|
||||
if train_ocsvm:
|
||||
ocsvm = OCSVM(
|
||||
kernel=ocsvm_kernel,
|
||||
nu=ocsvm_nu,
|
||||
hybrid=True,
|
||||
latent_space_dim=latent_space_dim,
|
||||
)
|
||||
if load_model and not pretrain:
|
||||
ae_model_path = load_model
|
||||
ocsvm.load_ae(
|
||||
net_name=net_name, model_path=ae_model_path, device=device
|
||||
)
|
||||
logger.info(
|
||||
f"Loaded pretrained autoencoder for features from {ae_model_path}."
|
||||
)
|
||||
|
||||
# Log training details
|
||||
@@ -525,7 +549,7 @@ def main(
|
||||
device=device,
|
||||
n_jobs_dataloader=n_jobs_dataloader,
|
||||
k_fold_idx=fold_idx,
|
||||
batch_size=8,
|
||||
batch_size=256,
|
||||
)
|
||||
|
||||
# Train model on dataset
|
||||
@@ -553,7 +577,7 @@ def main(
|
||||
device=device,
|
||||
n_jobs_dataloader=n_jobs_dataloader,
|
||||
k_fold_idx=fold_idx,
|
||||
batch_size=8,
|
||||
batch_size=256,
|
||||
)
|
||||
|
||||
# Test model
|
||||
@@ -730,7 +754,7 @@ def main(
|
||||
logger.info("Known anomaly classes: %s" % (dataset.known_outlier_classes,))
|
||||
|
||||
# Initialize DeepSAD model and set neural network phi
|
||||
deepSAD = DeepSAD(cfg.settings["eta"])
|
||||
deepSAD = DeepSAD(latent_space_dim, cfg.settings["eta"])
|
||||
deepSAD.set_network(net_name)
|
||||
|
||||
# If specified, load Deep SAD model (center c, network weights, and possibly autoencoder weights)
|
||||
@@ -776,22 +800,39 @@ def main(
|
||||
ratio_known_outlier,
|
||||
ratio_pollution,
|
||||
random_state=np.random.RandomState(cfg.settings["seed"]),
|
||||
k_fold_num=k_fold_num,
|
||||
)
|
||||
|
||||
# Dictionary to store results for each dimension
|
||||
# ae_elbow_dims = [32, 64, 128, 256, 384, 512, 768, 1024]
|
||||
ae_elbow_dims = [32, 64]
|
||||
elbow_results = {"dimensions": list(ae_elbow_dims), "ae_results": {}}
|
||||
# Set up k-fold passes
|
||||
train_passes = range(k_fold_num) if k_fold else [None]
|
||||
|
||||
# Test dimensions
|
||||
ae_elbow_dims = [32, 64, 128, 256, 384, 512, 768, 1024]
|
||||
|
||||
# Test each dimension
|
||||
for rep_dim in ae_elbow_dims:
|
||||
logger.info(f"Testing autoencoder with latent dimension: {rep_dim}")
|
||||
|
||||
# Results dictionary for this dimension
|
||||
dim_results = {
|
||||
"dimension": rep_dim,
|
||||
"ae_results": {},
|
||||
"k_fold": k_fold,
|
||||
"k_fold_num": k_fold_num,
|
||||
}
|
||||
|
||||
# For each fold
|
||||
for fold_idx in train_passes:
|
||||
if fold_idx is None:
|
||||
logger.info(f"Dimension {rep_dim}: Single training without k-fold")
|
||||
else:
|
||||
logger.info(
|
||||
f"Dimension {rep_dim}: Fold {fold_idx + 1}/{k_fold_num}"
|
||||
)
|
||||
|
||||
# Initialize DeepSAD model with current dimension
|
||||
deepSAD = DeepSAD(cfg.settings["eta"])
|
||||
deepSAD.set_network(
|
||||
net_name, rep_dim=rep_dim
|
||||
) # Pass rep_dim to network builder
|
||||
deepSAD = DeepSAD(rep_dim, cfg.settings["eta"])
|
||||
deepSAD.set_network(net_name)
|
||||
|
||||
# Pretrain autoencoder with current dimension
|
||||
deepSAD.pretrain(
|
||||
@@ -804,24 +845,40 @@ def main(
|
||||
weight_decay=cfg.settings["ae_weight_decay"],
|
||||
device=device,
|
||||
n_jobs_dataloader=n_jobs_dataloader,
|
||||
k_fold_idx=fold_idx,
|
||||
)
|
||||
|
||||
# Store results for this dimension
|
||||
elbow_results["ae_results"][rep_dim] = deepSAD.ae_results
|
||||
# Store results for this fold
|
||||
fold_key = "single" if fold_idx is None else f"fold_{fold_idx}"
|
||||
dim_results["ae_results"][fold_key] = deepSAD.ae_results
|
||||
|
||||
logger.info(f"Finished testing dimension {rep_dim}")
|
||||
logger.info(
|
||||
f"Finished testing dimension {rep_dim} "
|
||||
+ (
|
||||
f"fold {fold_idx + 1}/{k_fold_num}"
|
||||
if fold_idx is not None
|
||||
else "single pass"
|
||||
)
|
||||
)
|
||||
|
||||
# Clear some memory
|
||||
del deepSAD
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
# Save all results
|
||||
results_path = Path(xp_path) / f"ae_elbow_results_{net_name}.pkl"
|
||||
# Save results for this dimension (includes all folds)
|
||||
results_filename = (
|
||||
f"ae_elbow_results_{net_name}_dim_{rep_dim}"
|
||||
+ ("_kfold" if k_fold else "")
|
||||
+ ".pkl"
|
||||
)
|
||||
results_path = Path(xp_path) / results_filename
|
||||
|
||||
with open(results_path, "wb") as f:
|
||||
pickle.dump(elbow_results, f)
|
||||
|
||||
logger.info(f"Saved elbow test results to {results_path}")
|
||||
pickle.dump(dim_results, f)
|
||||
|
||||
logger.info(
|
||||
f"Saved elbow test results for dimension {rep_dim} to {results_path}"
|
||||
)
|
||||
else:
|
||||
logger.error(f"Unknown action: {action}")
|
||||
|
||||
|
||||
@@ -9,7 +9,7 @@ from .subter_LeNet_Split import SubTer_LeNet_Split, SubTer_LeNet_Split_Autoencod
|
||||
from .vae import VariationalAutoencoder
|
||||
|
||||
|
||||
def build_network(net_name, ae_net=None, rep_dim=1024):
|
||||
def build_network(net_name, rep_dim, ae_net=None):
|
||||
"""Builds the neural network."""
|
||||
|
||||
implemented_networks = (
|
||||
@@ -129,7 +129,7 @@ def build_network(net_name, ae_net=None, rep_dim=1024):
|
||||
return net
|
||||
|
||||
|
||||
def build_autoencoder(net_name):
|
||||
def build_autoencoder(net_name, rep_dim):
|
||||
"""Builds the corresponding autoencoder network."""
|
||||
|
||||
implemented_networks = (
|
||||
@@ -158,7 +158,7 @@ def build_autoencoder(net_name):
|
||||
ae_net = MNIST_LeNet_Autoencoder()
|
||||
|
||||
if net_name == "subter_LeNet":
|
||||
ae_net = SubTer_LeNet_Autoencoder()
|
||||
ae_net = SubTer_LeNet_Autoencoder(rep_dim=rep_dim)
|
||||
|
||||
if net_name == "subter_LeNet_Split":
|
||||
ae_net = SubTer_LeNet_Split_Autoencoder()
|
||||
|
||||
@@ -85,6 +85,7 @@ class AETrainer(BaseTrainer):
|
||||
logger.info("Starting pretraining...")
|
||||
start_time = time.time()
|
||||
ae_net.train()
|
||||
ae_net.summary(receptive_field=True) # Add network summary before training
|
||||
|
||||
for epoch in range(self.n_epochs):
|
||||
epoch_loss = 0.0
|
||||
@@ -197,6 +198,8 @@ class AETrainer(BaseTrainer):
|
||||
n_batches = 0
|
||||
start_time = time.time()
|
||||
ae_net.eval()
|
||||
ae_net.summary(receptive_field=True) # Add network summary before testing
|
||||
|
||||
with torch.no_grad():
|
||||
for data in test_loader:
|
||||
(
|
||||
|
||||
Reference in New Issue
Block a user