plot tool updates

This commit is contained in:
Jan Kowalczyk
2025-08-13 14:15:38 +02:00
parent 37ac637c9c
commit a936b754cb
3 changed files with 10 additions and 42 deletions

View File

@@ -1,40 +0,0 @@
{
description = "Python 3.13 devshell with tensorflow-datasets, matplotlib, scikit-learn and numpy";
inputs = {
nixpkgs.url = "github:NixOS/nixpkgs/nixos-unstable";
flake-utils.url = "github:numtide/flake-utils";
};
outputs =
{
self,
nixpkgs,
flake-utils,
...
}:
flake-utils.lib.eachDefaultSystem (
system:
let
pkgs = import nixpkgs {
inherit system;
# optional: config = { allowUnfree = true; };
};
in
{
devShells.default = pkgs.mkShell {
name = "py313-devshell";
# bring in the Python 3.13 packages
buildInputs =
with pkgs;
[ python313 ]
++ (with pkgs.python313Packages; [
tensorflow-datasets
matplotlib
scikit-learn
numpy
]);
};
}
);
}

View File

@@ -150,7 +150,7 @@ def plot_data_points(normal_experiment_paths, anomaly_experiment_paths, title):
plt.savefig(output_datetime_path / "missing_points_density.png") plt.savefig(output_datetime_path / "missing_points_density.png")
# create another density version which does not plot number of missing points but percentage of measurements that are missing (total number of points is 32*2048) # create another density version which does not plot number of missing points but percentage of measurements that are missing (total number of points is 32*2048)
bins = np.linspace(0, 1, 100) bins = np.linspace(0, 0.6, 100)
plt.clf() plt.clf()
plt.figure(figsize=(10, 5)) plt.figure(figsize=(10, 5))
plt.hist( plt.hist(

View File

@@ -78,11 +78,19 @@ def plot_tsne_latent_space(normal_data, anomaly_data, title="TSNE of Latent Spac
Plot the TSNE representation of the latent space. Plot the TSNE representation of the latent space.
This function first applies a PCA-based dimensionality reduction for efficiency. This function first applies a PCA-based dimensionality reduction for efficiency.
""" """
# Hardcoded variables to choose every nth normal sample and mth anomaly sample
n = 10 # Change this value to select every nth normal sample
m = 2 # Change this value to select every mth anomaly sample
# Select every nth normal sample and mth anomaly sample
normal_data = normal_data[::n]
anomaly_data = anomaly_data[::m]
# Combine normal and anomaly data # Combine normal and anomaly data
combined_data = np.vstack((normal_data, anomaly_data)) combined_data = np.vstack((normal_data, anomaly_data))
# Initial dimensionality reduction with PCA # Initial dimensionality reduction with PCA
reduced_data = reduce_dimensionality(combined_data, n_components=50) reduced_data = reduce_dimensionality(combined_data, n_components=100)
# Apply TSNE transformation on the PCA-reduced data # Apply TSNE transformation on the PCA-reduced data
tsne = TSNE(n_components=2, random_state=42) tsne = TSNE(n_components=2, random_state=42)