full upload so not to lose anything important
This commit is contained in:
82
tools/evaluate_roc.py
Normal file
82
tools/evaluate_roc.py
Normal file
@@ -0,0 +1,82 @@
|
||||
import pickle
|
||||
from pathlib import Path
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from scipy.stats import sem, t
|
||||
from sklearn.metrics import auc
|
||||
|
||||
|
||||
# Confidence interval function
|
||||
def confidence_interval(data, confidence=0.95):
|
||||
n = len(data)
|
||||
mean = np.mean(data)
|
||||
std_err = sem(data)
|
||||
h = std_err * t.ppf((1 + confidence) / 2.0, n - 1)
|
||||
return mean, h
|
||||
|
||||
|
||||
# Load ROC and AUC values from pickle files
|
||||
roc_data = []
|
||||
auc_scores = []
|
||||
isoforest_roc_data = []
|
||||
isoforest_auc_scores = []
|
||||
|
||||
results_path = Path(
|
||||
"/home/fedex/mt/projects/thesis-kowalczyk-jan/Deep-SAD-PyTorch/log/DeepSAD/subter_kfold_0_0"
|
||||
)
|
||||
|
||||
for i in range(5):
|
||||
with (results_path / f"results_{i}.pkl").open("rb") as f:
|
||||
data = pickle.load(f)
|
||||
roc_data.append(data["test_roc"])
|
||||
auc_scores.append(data["test_auc"])
|
||||
with (results_path / f"results.isoforest_{i}.pkl").open("rb") as f:
|
||||
data = pickle.load(f)
|
||||
isoforest_roc_data.append(data["test_roc"])
|
||||
isoforest_auc_scores.append(data["test_auc"])
|
||||
|
||||
# Calculate mean and confidence interval for AUC scores
|
||||
mean_auc, auc_ci = confidence_interval(auc_scores)
|
||||
|
||||
# Combine ROC curves
|
||||
mean_fpr = np.linspace(0, 1, 100)
|
||||
tprs = []
|
||||
|
||||
for fpr, tpr, _ in roc_data:
|
||||
interp_tpr = np.interp(mean_fpr, fpr, tpr)
|
||||
interp_tpr[0] = 0.0
|
||||
tprs.append(interp_tpr)
|
||||
|
||||
mean_tpr = np.mean(tprs, axis=0)
|
||||
mean_tpr[-1] = 1.0
|
||||
std_tpr = np.std(tprs, axis=0)
|
||||
|
||||
# Plot ROC curves with confidence margins
|
||||
plt.figure()
|
||||
plt.plot(
|
||||
mean_fpr,
|
||||
mean_tpr,
|
||||
color="b",
|
||||
label=f"Mean ROC (AUC = {mean_auc:.2f} ± {auc_ci:.2f})",
|
||||
)
|
||||
plt.fill_between(
|
||||
mean_fpr,
|
||||
mean_tpr - std_tpr,
|
||||
mean_tpr + std_tpr,
|
||||
color="b",
|
||||
alpha=0.2,
|
||||
label="± 1 std. dev.",
|
||||
)
|
||||
|
||||
# Plot each fold's ROC curve (optional)
|
||||
for i, (fpr, tpr, _) in enumerate(roc_data):
|
||||
plt.plot(fpr, tpr, lw=1, alpha=0.3, label=f"Fold {i + 1} ROC")
|
||||
|
||||
# Labels and legend
|
||||
plt.plot([0, 1], [0, 1], "k--", label="Chance")
|
||||
plt.xlabel("False Positive Rate")
|
||||
plt.ylabel("True Positive Rate")
|
||||
plt.title("ROC Curve with 5-Fold Cross-Validation")
|
||||
plt.legend(loc="lower right")
|
||||
plt.savefig("roc_curve_0_0.png")
|
||||
Reference in New Issue
Block a user