full upload so not to lose anything important

This commit is contained in:
Jan Kowalczyk
2025-03-14 18:02:23 +01:00
parent 35fcfb7d5a
commit b824ff7482
33 changed files with 3539 additions and 353 deletions

View File

@@ -137,47 +137,47 @@ def process_frame(args) -> Tuple[int, np.ndarray, Optional[Path]]:
lidar_data["horizontal_position"] = (
lidar_data["original_id"] % horizontal_resolution
)
lidar_data["horizontal_position_yaw_f"] = (
0.5
* horizontal_resolution
* (np.arctan2(lidar_data["y"], lidar_data["x"]) / pi + 1.0)
)
lidar_data["horizontal_position_yaw"] = np.floor(
lidar_data["horizontal_position_yaw_f"]
)
# lidar_data["horizontal_position_yaw_f"] = (
# 0.5
# * horizontal_resolution
# * (np.arctan2(lidar_data["y"], lidar_data["x"]) / pi + 1.0)
# )
# lidar_data["horizontal_position_yaw"] = np.floor(
# lidar_data["horizontal_position_yaw_f"]
# )
lidar_data["vertical_position"] = np.floor(
lidar_data["original_id"] / horizontal_resolution
)
# fov = 32 * pi / 180
# fov_down = 17 * pi / 180
fov = 31.76 * pi / 180
fov_down = 17.3 * pi / 180
lidar_data["vertical_angle"] = np.arcsin(
lidar_data["z"]
/ np.sqrt(lidar_data["x"] ** 2 + lidar_data["y"] ** 2 + lidar_data["z"] ** 2)
)
lidar_data["vertical_angle_degree"] = lidar_data["vertical_angle"] * 180 / pi
# fov = 31.76 * pi / 180
# fov_down = 17.3 * pi / 180
# lidar_data["vertical_angle"] = np.arcsin(
# lidar_data["z"]
# / np.sqrt(lidar_data["x"] ** 2 + lidar_data["y"] ** 2 + lidar_data["z"] ** 2)
# )
# lidar_data["vertical_angle_degree"] = lidar_data["vertical_angle"] * 180 / pi
lidar_data["vertical_position_pitch_f"] = vertical_resolution * (
1 - ((lidar_data["vertical_angle"] + fov_down) / fov)
)
lidar_data["vertical_position_pitch"] = np.floor(
lidar_data["vertical_position_pitch_f"]
)
# lidar_data["vertical_position_pitch_f"] = vertical_resolution * (
# 1 - ((lidar_data["vertical_angle"] + fov_down) / fov)
# )
# lidar_data["vertical_position_pitch"] = np.floor(
# lidar_data["vertical_position_pitch_f"]
# )
duplicates = lidar_data[
lidar_data.duplicated(
subset=["vertical_position_pitch", "horizontal_position_yaw"],
keep=False,
)
].sort_values(by=["vertical_position_pitch", "horizontal_position_yaw"])
# duplicates = lidar_data[
# lidar_data.duplicated(
# subset=["vertical_position_pitch", "horizontal_position_yaw"],
# keep=False,
# )
# ].sort_values(by=["vertical_position_pitch", "horizontal_position_yaw"])
lidar_data["normalized_range"] = 1 / np.sqrt(
lidar_data["x"] ** 2 + lidar_data["y"] ** 2 + lidar_data["z"] ** 2
)
projection_data = lidar_data.pivot(
index="vertical_position_pitch",
columns="horizontal_position_yaw",
index="vertical_position",
columns="horizontal_position",
values="normalized_range",
)
projection_data = projection_data.reindex(
@@ -208,8 +208,8 @@ def process_frame(args) -> Tuple[int, np.ndarray, Optional[Path]]:
i,
projection_data.to_numpy(),
image_path,
lidar_data["vertical_position_pitch_f"].min(),
lidar_data["vertical_position_pitch_f"].max(),
# lidar_data["vertical_position_pitch_f"].min(),
# lidar_data["vertical_position_pitch_f"].max(),
)
@@ -304,7 +304,7 @@ def create_projection_data(
if render_images:
return projection_data, rendered_images
else:
return (projection_data,)
return projection_data, None
def main() -> int: