This commit is contained in:
Jan Kowalczyk
2025-09-10 19:41:00 +02:00
parent ef0c36eed5
commit cf15d5501e
17 changed files with 1198 additions and 720 deletions

Binary file not shown.

View File

@@ -71,6 +71,11 @@
\usepackage[colorinlistoftodos]{todonotes}
%\usepackage[disable]{todonotes}
\usepackage{makecell}
\usepackage{longtable}
\usepackage{array}
\usepackage{tabularx}
\newcolumntype{Y}{>{\centering\arraybackslash}X}
\DeclareRobustCommand{\threadtodo}[4]{%
\todo[inline,
@@ -1251,6 +1256,114 @@ Table~\ref{tab:exp_grid} summarizes the full experiment matrix.
{table of hardware and of how long different trainings took}
{experiment setup understood $\rightarrow$ what were the experiments' results}
\begin{table}[p]
\centering
\caption{Computational Environment (Hardware \& Software)} \label{tab:system_setup}
\begin{tabular}{p{0.34\linewidth} p{0.62\linewidth}}
\toprule
\textbf{Item} & \textbf{Details} \\
\midrule
\multicolumn{2}{l}{\textbf{System}} \\
Operating System & \ttfamily NixOS 25.11 (Xantusia) \\
Kernel & \ttfamily 6.12.45 \\
Architecture & \ttfamily x86\_64 \\
CPU Model & \ttfamily AMD Ryzen 5 3600 6-Core Processor \\
CPU Cores (physical) & \ttfamily 6 × 1 \\
CPU Threads (logical) & \ttfamily 12 \\
CPU Base Frequency & \ttfamily 2200 MHz \\
CPU Max Frequency & \ttfamily 4208 MHz \\
Total RAM & \ttfamily 31.29 GiB \\
\addlinespace
\multicolumn{2}{l}{\textbf{GPU}} \\
GPU Name & \ttfamily NVIDIA GeForce RTX 2070 SUPER \\
GPU Memory & \ttfamily 8.00 GiB \\
GPU Compute Capability & \ttfamily 7.5 \\
NVIDIA Driver Version & \ttfamily 570.181 \\
CUDA (Driver) Version & \ttfamily 12.8 \\
\addlinespace
\multicolumn{2}{l}{\textbf{Software Environment}} \\
Python & \ttfamily 3.12.11 \\
PyTorch & \ttfamily 2.7.1+cu128 \\
PyTorch Built CUDA & \ttfamily 12.8 \\
cuDNN (PyTorch build) & \ttfamily 91100 \\
scikit-learn & \ttfamily 1.7.0 \\
NumPy & \ttfamily 2.3.1 \\
SciPy & \ttfamily 1.16.0 \\
NumPy Build Config & \begin{minipage}[t]{\linewidth}\ttfamily\small blas:
name: blas
openblas configuration: unknown
pc file directory: /nix/store/x19i4pf7zs1pp96mikj8azyn6v891i33-blas-3-dev/lib/pkgconfig
lapack:
name: lapack
openblas configuration: unknown
pc file directory: /nix/store/g819v6ri55f2gdczsi8s8bljkh0lkgwb-lapack-3-dev/lib/pkgconfig\end{minipage} \\
\addlinespace
\bottomrule
\end{tabular}
\end{table}
\begin{table}
\centering
\caption{Autoencoder pretraining runtime (seconds): mean ± std across folds.}
\label{tab:ae_pretrain_runtimes}
\begin{tabularx}{\textwidth}{cYY}
\toprule
& Autoencoder Efficient & Autoencoder LeNet \\
Latent Dim. & & \\
\midrule
32 & 1175.03 ± 35.87 s & 384.90 ± 34.59 s \\
64 & 1212.53 ± 35.76 s & 398.22 ± 41.25 s \\
128 & 1240.86 ± 11.51 s & 397.98 ± 33.43 s \\
256 & 1169.72 ± 33.26 s & 399.40 ± 38.20 s \\
512 & 1173.34 ± 34.99 s & 430.31 ± 38.02 s \\
768 & 1204.45 ± 37.52 s & 436.49 ± 37.13 s \\
1024 & 1216.79 ± 34.82 s & 411.69 ± 34.82 s \\
\bottomrule
\end{tabularx}
\end{table}
\begin{table}
\centering
\caption{Training runtime: total seconds (mean ± std). DeepSAD cells also show \textit{seconds per epoch} in parentheses.}
\label{tab:train_runtimes_compact}
\begin{tabularx}{\textwidth}{crrrr}
\toprule
& DeepSAD LeNet & DeepSAD Efficient & IsoForest & OCSVM \\
Latent Dim. & & & & \\
\midrule
32 & 765.37 ± 91.74 s & 1026.18 ± 84.13 s & 0.55 ± 0.02 s & 1.07 ± 00.29 s \\
64 & 815.88 ± 93.07 s & 1124.48 ± 60.84 s & 0.55 ± 0.02 s & 1.98 ± 01.57 s \\
128 & 828.53 ± 63.00 s & 1164.94 ± 02.13 s & 0.55 ± 0.02 s & 3.17 ± 02.63 s \\
256 & 794.54 ± 97.04 s & 986.88 ± 82.98 s & 0.55 ± 0.02 s & 12.81 ± 14.19 s \\
512 & 806.63 ± 99.83 s & 998.23 ± 80.34 s & 0.55 ± 0.02 s & 22.76 ± 23.52 s \\
768 & 818.56 ± 86.38 s & 1053.64 ± 78.72 s & 0.55 ± 0.02 s & 14.24 ± 01.21 s \\
1024 & 770.05 ± 86.22 s & 1054.92 ± 87.49 s & 0.55 ± 0.02 s & 28.20 ± 24.04 s \\
\bottomrule
\end{tabularx}
\end{table}
\begin{table}
\centering
\caption{Inference latency (ms/sample): mean ± std across folds; baselines collapsed across networks and semi-labeling.}
\label{tab:inference_latency_compact}
\begin{tabularx}{\textwidth}{cYcYY}
\toprule
& DeepSAD LeNet & DeepSAD Efficient & IsoForest & OCSVM \\
Latent Dim. & & & & \\
\midrule
32 & 0.31 ± 0.04 ms & 0.36 ± 0.05 ms & 0.02 ± 0.00 ms & 0.07 ± 0.02 ms \\
64 & 0.33 ± 0.06 ms & 0.43 ± 0.04 ms & 0.02 ± 0.00 ms & 0.10 ± 0.06 ms \\
128 & 0.31 ± 0.04 ms & 0.45 ± 0.02 ms & 0.02 ± 0.00 ms & 0.16 ± 0.09 ms \\
256 & 0.30 ± 0.04 ms & 0.33 ± 0.02 ms & 0.02 ± 0.00 ms & 0.30 ± 0.21 ms \\
512 & 0.32 ± 0.04 ms & 0.33 ± 0.02 ms & 0.02 ± 0.00 ms & 0.63 ± 0.65 ms \\
768 & 0.33 ± 0.03 ms & 0.41 ± 0.06 ms & 0.02 ± 0.00 ms & 0.39 ± 0.07 ms \\
1024 & 0.27 ± 0.02 ms & 0.39 ± 0.05 ms & 0.02 ± 0.00 ms & 0.94 ± 0.98 ms \\
\bottomrule
\end{tabularx}
\end{table}
\newchapter{results_discussion}{Results and Discussion}
\newsection{results}{Results}
\todo[inline]{some results, ROC curves, for both global and local}