initial work for elpv and subter datasets
elpv as example dataset/implementation subter with final dataset
This commit is contained in:
3
Deep-SAD-PyTorch/.gitignore
vendored
Normal file
3
Deep-SAD-PyTorch/.gitignore
vendored
Normal file
@@ -0,0 +1,3 @@
|
|||||||
|
**/__pycache__/
|
||||||
|
data
|
||||||
|
log
|
||||||
175
Deep-SAD-PyTorch/flake.lock
generated
Normal file
175
Deep-SAD-PyTorch/flake.lock
generated
Normal file
@@ -0,0 +1,175 @@
|
|||||||
|
{
|
||||||
|
"nodes": {
|
||||||
|
"flake-utils": {
|
||||||
|
"inputs": {
|
||||||
|
"systems": "systems"
|
||||||
|
},
|
||||||
|
"locked": {
|
||||||
|
"lastModified": 1710146030,
|
||||||
|
"narHash": "sha256-SZ5L6eA7HJ/nmkzGG7/ISclqe6oZdOZTNoesiInkXPQ=",
|
||||||
|
"owner": "numtide",
|
||||||
|
"repo": "flake-utils",
|
||||||
|
"rev": "b1d9ab70662946ef0850d488da1c9019f3a9752a",
|
||||||
|
"type": "github"
|
||||||
|
},
|
||||||
|
"original": {
|
||||||
|
"owner": "numtide",
|
||||||
|
"repo": "flake-utils",
|
||||||
|
"type": "github"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"flake-utils_2": {
|
||||||
|
"inputs": {
|
||||||
|
"systems": "systems_2"
|
||||||
|
},
|
||||||
|
"locked": {
|
||||||
|
"lastModified": 1710146030,
|
||||||
|
"narHash": "sha256-SZ5L6eA7HJ/nmkzGG7/ISclqe6oZdOZTNoesiInkXPQ=",
|
||||||
|
"owner": "numtide",
|
||||||
|
"repo": "flake-utils",
|
||||||
|
"rev": "b1d9ab70662946ef0850d488da1c9019f3a9752a",
|
||||||
|
"type": "github"
|
||||||
|
},
|
||||||
|
"original": {
|
||||||
|
"owner": "numtide",
|
||||||
|
"repo": "flake-utils",
|
||||||
|
"type": "github"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nix-github-actions": {
|
||||||
|
"inputs": {
|
||||||
|
"nixpkgs": [
|
||||||
|
"poetry2nix",
|
||||||
|
"nixpkgs"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"locked": {
|
||||||
|
"lastModified": 1703863825,
|
||||||
|
"narHash": "sha256-rXwqjtwiGKJheXB43ybM8NwWB8rO2dSRrEqes0S7F5Y=",
|
||||||
|
"owner": "nix-community",
|
||||||
|
"repo": "nix-github-actions",
|
||||||
|
"rev": "5163432afc817cf8bd1f031418d1869e4c9d5547",
|
||||||
|
"type": "github"
|
||||||
|
},
|
||||||
|
"original": {
|
||||||
|
"owner": "nix-community",
|
||||||
|
"repo": "nix-github-actions",
|
||||||
|
"type": "github"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nixpkgs": {
|
||||||
|
"locked": {
|
||||||
|
"lastModified": 1719327525,
|
||||||
|
"narHash": "sha256-fPWiFM4aYbK9zGTt3KJ9CwX//iyElRiNHWNj2hk3i0E=",
|
||||||
|
"owner": "NixOS",
|
||||||
|
"repo": "nixpkgs",
|
||||||
|
"rev": "191a3fd9786d09c8d82e89ed68c4463e7be09b3e",
|
||||||
|
"type": "github"
|
||||||
|
},
|
||||||
|
"original": {
|
||||||
|
"owner": "NixOS",
|
||||||
|
"ref": "nixos-unstable-small",
|
||||||
|
"repo": "nixpkgs",
|
||||||
|
"type": "github"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"poetry2nix": {
|
||||||
|
"inputs": {
|
||||||
|
"flake-utils": "flake-utils_2",
|
||||||
|
"nix-github-actions": "nix-github-actions",
|
||||||
|
"nixpkgs": [
|
||||||
|
"nixpkgs"
|
||||||
|
],
|
||||||
|
"systems": "systems_3",
|
||||||
|
"treefmt-nix": "treefmt-nix"
|
||||||
|
},
|
||||||
|
"locked": {
|
||||||
|
"lastModified": 1719358925,
|
||||||
|
"narHash": "sha256-ZV/2YB7nyeYCsDm6EMH0EKtlpxuu2ImEd5WrlceNwRE=",
|
||||||
|
"owner": "nix-community",
|
||||||
|
"repo": "poetry2nix",
|
||||||
|
"rev": "bbc1ee74fc1ac4082f617bf32f1c927e759717d2",
|
||||||
|
"type": "github"
|
||||||
|
},
|
||||||
|
"original": {
|
||||||
|
"owner": "nix-community",
|
||||||
|
"repo": "poetry2nix",
|
||||||
|
"type": "github"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"root": {
|
||||||
|
"inputs": {
|
||||||
|
"flake-utils": "flake-utils",
|
||||||
|
"nixpkgs": "nixpkgs",
|
||||||
|
"poetry2nix": "poetry2nix"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"systems": {
|
||||||
|
"locked": {
|
||||||
|
"lastModified": 1681028828,
|
||||||
|
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
|
||||||
|
"owner": "nix-systems",
|
||||||
|
"repo": "default",
|
||||||
|
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
|
||||||
|
"type": "github"
|
||||||
|
},
|
||||||
|
"original": {
|
||||||
|
"owner": "nix-systems",
|
||||||
|
"repo": "default",
|
||||||
|
"type": "github"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"systems_2": {
|
||||||
|
"locked": {
|
||||||
|
"lastModified": 1681028828,
|
||||||
|
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
|
||||||
|
"owner": "nix-systems",
|
||||||
|
"repo": "default",
|
||||||
|
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
|
||||||
|
"type": "github"
|
||||||
|
},
|
||||||
|
"original": {
|
||||||
|
"owner": "nix-systems",
|
||||||
|
"repo": "default",
|
||||||
|
"type": "github"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"systems_3": {
|
||||||
|
"locked": {
|
||||||
|
"lastModified": 1681028828,
|
||||||
|
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
|
||||||
|
"owner": "nix-systems",
|
||||||
|
"repo": "default",
|
||||||
|
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
|
||||||
|
"type": "github"
|
||||||
|
},
|
||||||
|
"original": {
|
||||||
|
"id": "systems",
|
||||||
|
"type": "indirect"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"treefmt-nix": {
|
||||||
|
"inputs": {
|
||||||
|
"nixpkgs": [
|
||||||
|
"poetry2nix",
|
||||||
|
"nixpkgs"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"locked": {
|
||||||
|
"lastModified": 1718522839,
|
||||||
|
"narHash": "sha256-ULzoKzEaBOiLRtjeY3YoGFJMwWSKRYOic6VNw2UyTls=",
|
||||||
|
"owner": "numtide",
|
||||||
|
"repo": "treefmt-nix",
|
||||||
|
"rev": "68eb1dc333ce82d0ab0c0357363ea17c31ea1f81",
|
||||||
|
"type": "github"
|
||||||
|
},
|
||||||
|
"original": {
|
||||||
|
"owner": "numtide",
|
||||||
|
"repo": "treefmt-nix",
|
||||||
|
"type": "github"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"root": "root",
|
||||||
|
"version": 7
|
||||||
|
}
|
||||||
49
Deep-SAD-PyTorch/flake.nix
Normal file
49
Deep-SAD-PyTorch/flake.nix
Normal file
@@ -0,0 +1,49 @@
|
|||||||
|
{
|
||||||
|
description = "Deepsad devenv with python 3.11";
|
||||||
|
|
||||||
|
inputs = {
|
||||||
|
flake-utils.url = "github:numtide/flake-utils";
|
||||||
|
nixpkgs.url = "github:NixOS/nixpkgs/nixos-unstable-small";
|
||||||
|
poetry2nix = {
|
||||||
|
url = "github:nix-community/poetry2nix";
|
||||||
|
inputs.nixpkgs.follows = "nixpkgs";
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
|
outputs = { self, nixpkgs, flake-utils, poetry2nix }:
|
||||||
|
flake-utils.lib.eachDefaultSystem (system:
|
||||||
|
let
|
||||||
|
# see https://github.com/nix-community/poetry2nix/tree/master#api for more functions and examples.
|
||||||
|
pkgs = import nixpkgs{
|
||||||
|
inherit system;
|
||||||
|
config.allowUnfree = true;
|
||||||
|
config.cudaSupport = true;
|
||||||
|
};
|
||||||
|
inherit (poetry2nix.lib.mkPoetry2Nix { inherit pkgs; }) mkPoetryApplication;
|
||||||
|
in
|
||||||
|
{
|
||||||
|
packages = {
|
||||||
|
deepsad = mkPoetryApplication {
|
||||||
|
projectDir = self;
|
||||||
|
preferWheels = true;
|
||||||
|
python = pkgs.python311;
|
||||||
|
};
|
||||||
|
default = self.packages.${system}.deepsad;
|
||||||
|
};
|
||||||
|
|
||||||
|
devShells.default = pkgs.mkShell {
|
||||||
|
inputsFrom = [ self.packages.${system}.deepsad ];
|
||||||
|
buildInputs = with pkgs.python311Packages; [
|
||||||
|
torch-bin
|
||||||
|
torchvision-bin
|
||||||
|
];
|
||||||
|
#LD_LIBRARY_PATH = with pkgs; lib.makeLibraryPath [
|
||||||
|
#pkgs.stdenv.cc.cc
|
||||||
|
#];
|
||||||
|
};
|
||||||
|
|
||||||
|
devShells.poetry = pkgs.mkShell {
|
||||||
|
packages = [ pkgs.poetry pkgs.python311 ];
|
||||||
|
};
|
||||||
|
});
|
||||||
|
}
|
||||||
785
Deep-SAD-PyTorch/poetry.lock
generated
Normal file
785
Deep-SAD-PyTorch/poetry.lock
generated
Normal file
@@ -0,0 +1,785 @@
|
|||||||
|
# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand.
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "click"
|
||||||
|
version = "8.1.7"
|
||||||
|
description = "Composable command line interface toolkit"
|
||||||
|
optional = false
|
||||||
|
python-versions = ">=3.7"
|
||||||
|
files = [
|
||||||
|
{file = "click-8.1.7-py3-none-any.whl", hash = "sha256:ae74fb96c20a0277a1d615f1e4d73c8414f5a98db8b799a7931d1582f3390c28"},
|
||||||
|
{file = "click-8.1.7.tar.gz", hash = "sha256:ca9853ad459e787e2192211578cc907e7594e294c7ccc834310722b41b9ca6de"},
|
||||||
|
]
|
||||||
|
|
||||||
|
[package.dependencies]
|
||||||
|
colorama = {version = "*", markers = "platform_system == \"Windows\""}
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "colorama"
|
||||||
|
version = "0.4.6"
|
||||||
|
description = "Cross-platform colored terminal text."
|
||||||
|
optional = false
|
||||||
|
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7"
|
||||||
|
files = [
|
||||||
|
{file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"},
|
||||||
|
{file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"},
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "contourpy"
|
||||||
|
version = "1.2.1"
|
||||||
|
description = "Python library for calculating contours of 2D quadrilateral grids"
|
||||||
|
optional = false
|
||||||
|
python-versions = ">=3.9"
|
||||||
|
files = [
|
||||||
|
{file = "contourpy-1.2.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:bd7c23df857d488f418439686d3b10ae2fbf9bc256cd045b37a8c16575ea1040"},
|
||||||
|
{file = "contourpy-1.2.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5b9eb0ca724a241683c9685a484da9d35c872fd42756574a7cfbf58af26677fd"},
|
||||||
|
{file = "contourpy-1.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4c75507d0a55378240f781599c30e7776674dbaf883a46d1c90f37e563453480"},
|
||||||
|
{file = "contourpy-1.2.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:11959f0ce4a6f7b76ec578576a0b61a28bdc0696194b6347ba3f1c53827178b9"},
|
||||||
|
{file = "contourpy-1.2.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:eb3315a8a236ee19b6df481fc5f997436e8ade24a9f03dfdc6bd490fea20c6da"},
|
||||||
|
{file = "contourpy-1.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:39f3ecaf76cd98e802f094e0d4fbc6dc9c45a8d0c4d185f0f6c2234e14e5f75b"},
|
||||||
|
{file = "contourpy-1.2.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:94b34f32646ca0414237168d68a9157cb3889f06b096612afdd296003fdd32fd"},
|
||||||
|
{file = "contourpy-1.2.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:457499c79fa84593f22454bbd27670227874cd2ff5d6c84e60575c8b50a69619"},
|
||||||
|
{file = "contourpy-1.2.1-cp310-cp310-win32.whl", hash = "sha256:ac58bdee53cbeba2ecad824fa8159493f0bf3b8ea4e93feb06c9a465d6c87da8"},
|
||||||
|
{file = "contourpy-1.2.1-cp310-cp310-win_amd64.whl", hash = "sha256:9cffe0f850e89d7c0012a1fb8730f75edd4320a0a731ed0c183904fe6ecfc3a9"},
|
||||||
|
{file = "contourpy-1.2.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6022cecf8f44e36af10bd9118ca71f371078b4c168b6e0fab43d4a889985dbb5"},
|
||||||
|
{file = "contourpy-1.2.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ef5adb9a3b1d0c645ff694f9bca7702ec2c70f4d734f9922ea34de02294fdf72"},
|
||||||
|
{file = "contourpy-1.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6150ffa5c767bc6332df27157d95442c379b7dce3a38dff89c0f39b63275696f"},
|
||||||
|
{file = "contourpy-1.2.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4c863140fafc615c14a4bf4efd0f4425c02230eb8ef02784c9a156461e62c965"},
|
||||||
|
{file = "contourpy-1.2.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:00e5388f71c1a0610e6fe56b5c44ab7ba14165cdd6d695429c5cd94021e390b2"},
|
||||||
|
{file = "contourpy-1.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d4492d82b3bc7fbb7e3610747b159869468079fe149ec5c4d771fa1f614a14df"},
|
||||||
|
{file = "contourpy-1.2.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:49e70d111fee47284d9dd867c9bb9a7058a3c617274900780c43e38d90fe1205"},
|
||||||
|
{file = "contourpy-1.2.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:b59c0ffceff8d4d3996a45f2bb6f4c207f94684a96bf3d9728dbb77428dd8cb8"},
|
||||||
|
{file = "contourpy-1.2.1-cp311-cp311-win32.whl", hash = "sha256:7b4182299f251060996af5249c286bae9361fa8c6a9cda5efc29fe8bfd6062ec"},
|
||||||
|
{file = "contourpy-1.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:2855c8b0b55958265e8b5888d6a615ba02883b225f2227461aa9127c578a4922"},
|
||||||
|
{file = "contourpy-1.2.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:62828cada4a2b850dbef89c81f5a33741898b305db244904de418cc957ff05dc"},
|
||||||
|
{file = "contourpy-1.2.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:309be79c0a354afff9ff7da4aaed7c3257e77edf6c1b448a779329431ee79d7e"},
|
||||||
|
{file = "contourpy-1.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e785e0f2ef0d567099b9ff92cbfb958d71c2d5b9259981cd9bee81bd194c9a4"},
|
||||||
|
{file = "contourpy-1.2.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1cac0a8f71a041aa587410424ad46dfa6a11f6149ceb219ce7dd48f6b02b87a7"},
|
||||||
|
{file = "contourpy-1.2.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:af3f4485884750dddd9c25cb7e3915d83c2db92488b38ccb77dd594eac84c4a0"},
|
||||||
|
{file = "contourpy-1.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ce6889abac9a42afd07a562c2d6d4b2b7134f83f18571d859b25624a331c90b"},
|
||||||
|
{file = "contourpy-1.2.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:a1eea9aecf761c661d096d39ed9026574de8adb2ae1c5bd7b33558af884fb2ce"},
|
||||||
|
{file = "contourpy-1.2.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:187fa1d4c6acc06adb0fae5544c59898ad781409e61a926ac7e84b8f276dcef4"},
|
||||||
|
{file = "contourpy-1.2.1-cp312-cp312-win32.whl", hash = "sha256:c2528d60e398c7c4c799d56f907664673a807635b857df18f7ae64d3e6ce2d9f"},
|
||||||
|
{file = "contourpy-1.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:1a07fc092a4088ee952ddae19a2b2a85757b923217b7eed584fdf25f53a6e7ce"},
|
||||||
|
{file = "contourpy-1.2.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bb6834cbd983b19f06908b45bfc2dad6ac9479ae04abe923a275b5f48f1a186b"},
|
||||||
|
{file = "contourpy-1.2.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1d59e739ab0e3520e62a26c60707cc3ab0365d2f8fecea74bfe4de72dc56388f"},
|
||||||
|
{file = "contourpy-1.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bd3db01f59fdcbce5b22afad19e390260d6d0222f35a1023d9adc5690a889364"},
|
||||||
|
{file = "contourpy-1.2.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a12a813949e5066148712a0626895c26b2578874e4cc63160bb007e6df3436fe"},
|
||||||
|
{file = "contourpy-1.2.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fe0ccca550bb8e5abc22f530ec0466136379c01321fd94f30a22231e8a48d985"},
|
||||||
|
{file = "contourpy-1.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e1d59258c3c67c865435d8fbeb35f8c59b8bef3d6f46c1f29f6123556af28445"},
|
||||||
|
{file = "contourpy-1.2.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:f32c38afb74bd98ce26de7cc74a67b40afb7b05aae7b42924ea990d51e4dac02"},
|
||||||
|
{file = "contourpy-1.2.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d31a63bc6e6d87f77d71e1abbd7387ab817a66733734883d1fc0021ed9bfa083"},
|
||||||
|
{file = "contourpy-1.2.1-cp39-cp39-win32.whl", hash = "sha256:ddcb8581510311e13421b1f544403c16e901c4e8f09083c881fab2be80ee31ba"},
|
||||||
|
{file = "contourpy-1.2.1-cp39-cp39-win_amd64.whl", hash = "sha256:10a37ae557aabf2509c79715cd20b62e4c7c28b8cd62dd7d99e5ed3ce28c3fd9"},
|
||||||
|
{file = "contourpy-1.2.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a31f94983fecbac95e58388210427d68cd30fe8a36927980fab9c20062645609"},
|
||||||
|
{file = "contourpy-1.2.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ef2b055471c0eb466033760a521efb9d8a32b99ab907fc8358481a1dd29e3bd3"},
|
||||||
|
{file = "contourpy-1.2.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:b33d2bc4f69caedcd0a275329eb2198f560b325605810895627be5d4b876bf7f"},
|
||||||
|
{file = "contourpy-1.2.1.tar.gz", hash = "sha256:4d8908b3bee1c889e547867ca4cdc54e5ab6be6d3e078556814a22457f49423c"},
|
||||||
|
]
|
||||||
|
|
||||||
|
[package.dependencies]
|
||||||
|
numpy = ">=1.20"
|
||||||
|
|
||||||
|
[package.extras]
|
||||||
|
bokeh = ["bokeh", "selenium"]
|
||||||
|
docs = ["furo", "sphinx (>=7.2)", "sphinx-copybutton"]
|
||||||
|
mypy = ["contourpy[bokeh,docs]", "docutils-stubs", "mypy (==1.8.0)", "types-Pillow"]
|
||||||
|
test = ["Pillow", "contourpy[test-no-images]", "matplotlib"]
|
||||||
|
test-no-images = ["pytest", "pytest-cov", "pytest-xdist", "wurlitzer"]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "cvxopt"
|
||||||
|
version = "1.3.2"
|
||||||
|
description = "Convex optimization package"
|
||||||
|
optional = false
|
||||||
|
python-versions = ">=3, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
|
||||||
|
files = [
|
||||||
|
{file = "cvxopt-1.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:cd4a1bba537a34808b92f1e793e3499029d339a7a2ab6d989f82e395b7b740ff"},
|
||||||
|
{file = "cvxopt-1.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e3cd2db913b1cf64d84cdb7bc467a8a15adbd1f0f83a7a45a7167ad590f79408"},
|
||||||
|
{file = "cvxopt-1.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6874e1b9aa002f9d796da9d02bdca76b15aa3d4b2f83ca5064ac4c7894b92ece"},
|
||||||
|
{file = "cvxopt-1.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:22d12b88190e047c0cedde165711222aa0dcdc325a229b876c36f746dd4a6f12"},
|
||||||
|
{file = "cvxopt-1.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a459b6ee9f99fc34861cbcf679a196af2d930ec70d95018a94f2e6dbe46c8c24"},
|
||||||
|
{file = "cvxopt-1.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8ae730ebc130461f743922f11d00c2d59a79492e57a1f5d245d4a6c731b7e334"},
|
||||||
|
{file = "cvxopt-1.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:994dab68c193bea405a3a89a88b8703dd2c79bb790a330c8d459f0454cca71ef"},
|
||||||
|
{file = "cvxopt-1.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:0c45f663e40b3ed2e2320e7ae8d50fcf09b5ac72c5af4c66aa523e0045453311"},
|
||||||
|
{file = "cvxopt-1.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:25adbeb0efd50d7ea4f07e5f5bd390a3c807df907f03efb86b018807c2c8cfbe"},
|
||||||
|
{file = "cvxopt-1.3.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:c10e27cb7a27b55f17e0df30c6b85e98c9672a7bdb7000a7509560eee7679137"},
|
||||||
|
{file = "cvxopt-1.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e8bcf71a5016aeb24e597dc099564e8de809e0bc5d6af21e26422586aea26718"},
|
||||||
|
{file = "cvxopt-1.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:a92ebfc5df77fea57544f8ad2102bfc45af0e77ac4dfe98ed1b9628e8bba77c3"},
|
||||||
|
{file = "cvxopt-1.3.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:dcc0c091977b9211ad5086d0dfcc8748a4be3a37b0456c93d11a5d8fe15219e8"},
|
||||||
|
{file = "cvxopt-1.3.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:6e14c47766b39e97142b163ba218b955cd5c47d19d9bd01b01e0909102b43384"},
|
||||||
|
{file = "cvxopt-1.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a075e333916da7fc941b36a4f189b88acd291f1d861d97ba876626c277b3e575"},
|
||||||
|
{file = "cvxopt-1.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c237b57845b1e4ac00c012581cde099cd71a91434c117fec763bb4bf5b22601b"},
|
||||||
|
{file = "cvxopt-1.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:45e702d4649d2d4e73fcd8f244aa5734a04d2b1a3fa3e7c0bff1ab578bf5061e"},
|
||||||
|
{file = "cvxopt-1.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:f88dd546d91eb9e0974eee477b76077d001eeeb7b819d8801eb6065376d7d527"},
|
||||||
|
{file = "cvxopt-1.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e2ec16afa3e953159e148b7470159e415108aadb8bb1815baaea2e37ad7e1d8c"},
|
||||||
|
{file = "cvxopt-1.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:8157ef551c80b4745b786d0d8ae5cc222824482fb8596ce271bf49b707d38577"},
|
||||||
|
{file = "cvxopt-1.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:098abd1d648d9e44f7ad55542b3b7f978b82280f4332ad80a937db6fbe274600"},
|
||||||
|
{file = "cvxopt-1.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:f4ae2bc20a7d44657cc3ab1e2b80fa07ff3ebe0c1e0fa1f0b27b2ba693eb5072"},
|
||||||
|
{file = "cvxopt-1.3.2.tar.gz", hash = "sha256:3461fa42c1b2240ba4da1d985ca73503914157fc4c77417327ed6d7d85acdbe6"},
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "cycler"
|
||||||
|
version = "0.12.1"
|
||||||
|
description = "Composable style cycles"
|
||||||
|
optional = false
|
||||||
|
python-versions = ">=3.8"
|
||||||
|
files = [
|
||||||
|
{file = "cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30"},
|
||||||
|
{file = "cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c"},
|
||||||
|
]
|
||||||
|
|
||||||
|
[package.extras]
|
||||||
|
docs = ["ipython", "matplotlib", "numpydoc", "sphinx"]
|
||||||
|
tests = ["pytest", "pytest-cov", "pytest-xdist"]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "fonttools"
|
||||||
|
version = "4.53.0"
|
||||||
|
description = "Tools to manipulate font files"
|
||||||
|
optional = false
|
||||||
|
python-versions = ">=3.8"
|
||||||
|
files = [
|
||||||
|
{file = "fonttools-4.53.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:52a6e0a7a0bf611c19bc8ec8f7592bdae79c8296c70eb05917fd831354699b20"},
|
||||||
|
{file = "fonttools-4.53.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:099634631b9dd271d4a835d2b2a9e042ccc94ecdf7e2dd9f7f34f7daf333358d"},
|
||||||
|
{file = "fonttools-4.53.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e40013572bfb843d6794a3ce076c29ef4efd15937ab833f520117f8eccc84fd6"},
|
||||||
|
{file = "fonttools-4.53.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:715b41c3e231f7334cbe79dfc698213dcb7211520ec7a3bc2ba20c8515e8a3b5"},
|
||||||
|
{file = "fonttools-4.53.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:74ae2441731a05b44d5988d3ac2cf784d3ee0a535dbed257cbfff4be8bb49eb9"},
|
||||||
|
{file = "fonttools-4.53.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:95db0c6581a54b47c30860d013977b8a14febc206c8b5ff562f9fe32738a8aca"},
|
||||||
|
{file = "fonttools-4.53.0-cp310-cp310-win32.whl", hash = "sha256:9cd7a6beec6495d1dffb1033d50a3f82dfece23e9eb3c20cd3c2444d27514068"},
|
||||||
|
{file = "fonttools-4.53.0-cp310-cp310-win_amd64.whl", hash = "sha256:daaef7390e632283051e3cf3e16aff2b68b247e99aea916f64e578c0449c9c68"},
|
||||||
|
{file = "fonttools-4.53.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:a209d2e624ba492df4f3bfad5996d1f76f03069c6133c60cd04f9a9e715595ec"},
|
||||||
|
{file = "fonttools-4.53.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4f520d9ac5b938e6494f58a25c77564beca7d0199ecf726e1bd3d56872c59749"},
|
||||||
|
{file = "fonttools-4.53.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eceef49f457253000e6a2d0f7bd08ff4e9fe96ec4ffce2dbcb32e34d9c1b8161"},
|
||||||
|
{file = "fonttools-4.53.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa1f3e34373aa16045484b4d9d352d4c6b5f9f77ac77a178252ccbc851e8b2ee"},
|
||||||
|
{file = "fonttools-4.53.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:28d072169fe8275fb1a0d35e3233f6df36a7e8474e56cb790a7258ad822b6fd6"},
|
||||||
|
{file = "fonttools-4.53.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:4a2a6ba400d386e904fd05db81f73bee0008af37799a7586deaa4aef8cd5971e"},
|
||||||
|
{file = "fonttools-4.53.0-cp311-cp311-win32.whl", hash = "sha256:bb7273789f69b565d88e97e9e1da602b4ee7ba733caf35a6c2affd4334d4f005"},
|
||||||
|
{file = "fonttools-4.53.0-cp311-cp311-win_amd64.whl", hash = "sha256:9fe9096a60113e1d755e9e6bda15ef7e03391ee0554d22829aa506cdf946f796"},
|
||||||
|
{file = "fonttools-4.53.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:d8f191a17369bd53a5557a5ee4bab91d5330ca3aefcdf17fab9a497b0e7cff7a"},
|
||||||
|
{file = "fonttools-4.53.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:93156dd7f90ae0a1b0e8871032a07ef3178f553f0c70c386025a808f3a63b1f4"},
|
||||||
|
{file = "fonttools-4.53.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bff98816cb144fb7b85e4b5ba3888a33b56ecef075b0e95b95bcd0a5fbf20f06"},
|
||||||
|
{file = "fonttools-4.53.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:973d030180eca8255b1bce6ffc09ef38a05dcec0e8320cc9b7bcaa65346f341d"},
|
||||||
|
{file = "fonttools-4.53.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:c4ee5a24e281fbd8261c6ab29faa7fd9a87a12e8c0eed485b705236c65999109"},
|
||||||
|
{file = "fonttools-4.53.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:bd5bc124fae781a4422f61b98d1d7faa47985f663a64770b78f13d2c072410c2"},
|
||||||
|
{file = "fonttools-4.53.0-cp312-cp312-win32.whl", hash = "sha256:a239afa1126b6a619130909c8404070e2b473dd2b7fc4aacacd2e763f8597fea"},
|
||||||
|
{file = "fonttools-4.53.0-cp312-cp312-win_amd64.whl", hash = "sha256:45b4afb069039f0366a43a5d454bc54eea942bfb66b3fc3e9a2c07ef4d617380"},
|
||||||
|
{file = "fonttools-4.53.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:93bc9e5aaa06ff928d751dc6be889ff3e7d2aa393ab873bc7f6396a99f6fbb12"},
|
||||||
|
{file = "fonttools-4.53.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:2367d47816cc9783a28645bc1dac07f8ffc93e0f015e8c9fc674a5b76a6da6e4"},
|
||||||
|
{file = "fonttools-4.53.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:907fa0b662dd8fc1d7c661b90782ce81afb510fc4b7aa6ae7304d6c094b27bce"},
|
||||||
|
{file = "fonttools-4.53.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3e0ad3c6ea4bd6a289d958a1eb922767233f00982cf0fe42b177657c86c80a8f"},
|
||||||
|
{file = "fonttools-4.53.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:73121a9b7ff93ada888aaee3985a88495489cc027894458cb1a736660bdfb206"},
|
||||||
|
{file = "fonttools-4.53.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:ee595d7ba9bba130b2bec555a40aafa60c26ce68ed0cf509983e0f12d88674fd"},
|
||||||
|
{file = "fonttools-4.53.0-cp38-cp38-win32.whl", hash = "sha256:fca66d9ff2ac89b03f5aa17e0b21a97c21f3491c46b583bb131eb32c7bab33af"},
|
||||||
|
{file = "fonttools-4.53.0-cp38-cp38-win_amd64.whl", hash = "sha256:31f0e3147375002aae30696dd1dc596636abbd22fca09d2e730ecde0baad1d6b"},
|
||||||
|
{file = "fonttools-4.53.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7d6166192dcd925c78a91d599b48960e0a46fe565391c79fe6de481ac44d20ac"},
|
||||||
|
{file = "fonttools-4.53.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ef50ec31649fbc3acf6afd261ed89d09eb909b97cc289d80476166df8438524d"},
|
||||||
|
{file = "fonttools-4.53.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7f193f060391a455920d61684a70017ef5284ccbe6023bb056e15e5ac3de11d1"},
|
||||||
|
{file = "fonttools-4.53.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba9f09ff17f947392a855e3455a846f9855f6cf6bec33e9a427d3c1d254c712f"},
|
||||||
|
{file = "fonttools-4.53.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:0c555e039d268445172b909b1b6bdcba42ada1cf4a60e367d68702e3f87e5f64"},
|
||||||
|
{file = "fonttools-4.53.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:5a4788036201c908079e89ae3f5399b33bf45b9ea4514913f4dbbe4fac08efe0"},
|
||||||
|
{file = "fonttools-4.53.0-cp39-cp39-win32.whl", hash = "sha256:d1a24f51a3305362b94681120c508758a88f207fa0a681c16b5a4172e9e6c7a9"},
|
||||||
|
{file = "fonttools-4.53.0-cp39-cp39-win_amd64.whl", hash = "sha256:1e677bfb2b4bd0e5e99e0f7283e65e47a9814b0486cb64a41adf9ef110e078f2"},
|
||||||
|
{file = "fonttools-4.53.0-py3-none-any.whl", hash = "sha256:6b4f04b1fbc01a3569d63359f2227c89ab294550de277fd09d8fca6185669fa4"},
|
||||||
|
{file = "fonttools-4.53.0.tar.gz", hash = "sha256:c93ed66d32de1559b6fc348838c7572d5c0ac1e4a258e76763a5caddd8944002"},
|
||||||
|
]
|
||||||
|
|
||||||
|
[package.extras]
|
||||||
|
all = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "fs (>=2.2.0,<3)", "lxml (>=4.0)", "lz4 (>=1.7.4.2)", "matplotlib", "munkres", "pycairo", "scipy", "skia-pathops (>=0.5.0)", "sympy", "uharfbuzz (>=0.23.0)", "unicodedata2 (>=15.1.0)", "xattr", "zopfli (>=0.1.4)"]
|
||||||
|
graphite = ["lz4 (>=1.7.4.2)"]
|
||||||
|
interpolatable = ["munkres", "pycairo", "scipy"]
|
||||||
|
lxml = ["lxml (>=4.0)"]
|
||||||
|
pathops = ["skia-pathops (>=0.5.0)"]
|
||||||
|
plot = ["matplotlib"]
|
||||||
|
repacker = ["uharfbuzz (>=0.23.0)"]
|
||||||
|
symfont = ["sympy"]
|
||||||
|
type1 = ["xattr"]
|
||||||
|
ufo = ["fs (>=2.2.0,<3)"]
|
||||||
|
unicode = ["unicodedata2 (>=15.1.0)"]
|
||||||
|
woff = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "zopfli (>=0.1.4)"]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "joblib"
|
||||||
|
version = "1.4.2"
|
||||||
|
description = "Lightweight pipelining with Python functions"
|
||||||
|
optional = false
|
||||||
|
python-versions = ">=3.8"
|
||||||
|
files = [
|
||||||
|
{file = "joblib-1.4.2-py3-none-any.whl", hash = "sha256:06d478d5674cbc267e7496a410ee875abd68e4340feff4490bcb7afb88060ae6"},
|
||||||
|
{file = "joblib-1.4.2.tar.gz", hash = "sha256:2382c5816b2636fbd20a09e0f4e9dad4736765fdfb7dca582943b9c1366b3f0e"},
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "kiwisolver"
|
||||||
|
version = "1.4.5"
|
||||||
|
description = "A fast implementation of the Cassowary constraint solver"
|
||||||
|
optional = false
|
||||||
|
python-versions = ">=3.7"
|
||||||
|
files = [
|
||||||
|
{file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:05703cf211d585109fcd72207a31bb170a0f22144d68298dc5e61b3c946518af"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:146d14bebb7f1dc4d5fbf74f8a6cb15ac42baadee8912eb84ac0b3b2a3dc6ac3"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6ef7afcd2d281494c0a9101d5c571970708ad911d028137cd558f02b851c08b4"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9eaa8b117dc8337728e834b9c6e2611f10c79e38f65157c4c38e9400286f5cb1"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ec20916e7b4cbfb1f12380e46486ec4bcbaa91a9c448b97023fde0d5bbf9e4ff"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39b42c68602539407884cf70d6a480a469b93b81b7701378ba5e2328660c847a"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aa12042de0171fad672b6c59df69106d20d5596e4f87b5e8f76df757a7c399aa"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a40773c71d7ccdd3798f6489aaac9eee213d566850a9533f8d26332d626b82c"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:19df6e621f6d8b4b9c4d45f40a66839294ff2bb235e64d2178f7522d9170ac5b"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:83d78376d0d4fd884e2c114d0621624b73d2aba4e2788182d286309ebdeed770"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:e391b1f0a8a5a10ab3b9bb6afcfd74f2175f24f8975fb87ecae700d1503cdee0"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:852542f9481f4a62dbb5dd99e8ab7aedfeb8fb6342349a181d4036877410f525"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:59edc41b24031bc25108e210c0def6f6c2191210492a972d585a06ff246bb79b"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp310-cp310-win32.whl", hash = "sha256:a6aa6315319a052b4ee378aa171959c898a6183f15c1e541821c5c59beaa0238"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp310-cp310-win_amd64.whl", hash = "sha256:d0ef46024e6a3d79c01ff13801cb19d0cad7fd859b15037aec74315540acc276"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:11863aa14a51fd6ec28688d76f1735f8f69ab1fabf388851a595d0721af042f5"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8ab3919a9997ab7ef2fbbed0cc99bb28d3c13e6d4b1ad36e97e482558a91be90"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fcc700eadbbccbf6bc1bcb9dbe0786b4b1cb91ca0dcda336eef5c2beed37b797"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dfdd7c0b105af050eb3d64997809dc21da247cf44e63dc73ff0fd20b96be55a9"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76c6a5964640638cdeaa0c359382e5703e9293030fe730018ca06bc2010c4437"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bbea0db94288e29afcc4c28afbf3a7ccaf2d7e027489c449cf7e8f83c6346eb9"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ceec1a6bc6cab1d6ff5d06592a91a692f90ec7505d6463a88a52cc0eb58545da"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:040c1aebeda72197ef477a906782b5ab0d387642e93bda547336b8957c61022e"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f91de7223d4c7b793867797bacd1ee53bfe7359bd70d27b7b58a04efbb9436c8"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:faae4860798c31530dd184046a900e652c95513796ef51a12bc086710c2eec4d"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:b0157420efcb803e71d1b28e2c287518b8808b7cf1ab8af36718fd0a2c453eb0"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:06f54715b7737c2fecdbf140d1afb11a33d59508a47bf11bb38ecf21dc9ab79f"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fdb7adb641a0d13bdcd4ef48e062363d8a9ad4a182ac7647ec88f695e719ae9f"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp311-cp311-win32.whl", hash = "sha256:bb86433b1cfe686da83ce32a9d3a8dd308e85c76b60896d58f082136f10bffac"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp311-cp311-win_amd64.whl", hash = "sha256:6c08e1312a9cf1074d17b17728d3dfce2a5125b2d791527f33ffbe805200a355"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:32d5cf40c4f7c7b3ca500f8985eb3fb3a7dfc023215e876f207956b5ea26632a"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f846c260f483d1fd217fe5ed7c173fb109efa6b1fc8381c8b7552c5781756192"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5ff5cf3571589b6d13bfbfd6bcd7a3f659e42f96b5fd1c4830c4cf21d4f5ef45"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7269d9e5f1084a653d575c7ec012ff57f0c042258bf5db0954bf551c158466e7"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da802a19d6e15dffe4b0c24b38b3af68e6c1a68e6e1d8f30148c83864f3881db"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3aba7311af82e335dd1e36ffff68aaca609ca6290c2cb6d821a39aa075d8e3ff"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:763773d53f07244148ccac5b084da5adb90bfaee39c197554f01b286cf869228"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2270953c0d8cdab5d422bee7d2007f043473f9d2999631c86a223c9db56cbd16"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d099e745a512f7e3bbe7249ca835f4d357c586d78d79ae8f1dcd4d8adeb9bda9"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:74db36e14a7d1ce0986fa104f7d5637aea5c82ca6326ed0ec5694280942d1162"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:7e5bab140c309cb3a6ce373a9e71eb7e4873c70c2dda01df6820474f9889d6d4"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:0f114aa76dc1b8f636d077979c0ac22e7cd8f3493abbab152f20eb8d3cda71f3"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:88a2df29d4724b9237fc0c6eaf2a1adae0cdc0b3e9f4d8e7dc54b16812d2d81a"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp312-cp312-win32.whl", hash = "sha256:72d40b33e834371fd330fb1472ca19d9b8327acb79a5821d4008391db8e29f20"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp312-cp312-win_amd64.whl", hash = "sha256:2c5674c4e74d939b9d91dda0fae10597ac7521768fec9e399c70a1f27e2ea2d9"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3a2b053a0ab7a3960c98725cfb0bf5b48ba82f64ec95fe06f1d06c99b552e130"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3cd32d6c13807e5c66a7cbb79f90b553642f296ae4518a60d8d76243b0ad2898"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:59ec7b7c7e1a61061850d53aaf8e93db63dce0c936db1fda2658b70e4a1be709"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:da4cfb373035def307905d05041c1d06d8936452fe89d464743ae7fb8371078b"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2400873bccc260b6ae184b2b8a4fec0e4082d30648eadb7c3d9a13405d861e89"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:1b04139c4236a0f3aff534479b58f6f849a8b351e1314826c2d230849ed48985"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:4e66e81a5779b65ac21764c295087de82235597a2293d18d943f8e9e32746265"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:7931d8f1f67c4be9ba1dd9c451fb0eeca1a25b89e4d3f89e828fe12a519b782a"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:b3f7e75f3015df442238cca659f8baa5f42ce2a8582727981cbfa15fee0ee205"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:bbf1d63eef84b2e8c89011b7f2235b1e0bf7dacc11cac9431fc6468e99ac77fb"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:4c380469bd3f970ef677bf2bcba2b6b0b4d5c75e7a020fb863ef75084efad66f"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp37-cp37m-win32.whl", hash = "sha256:9408acf3270c4b6baad483865191e3e582b638b1654a007c62e3efe96f09a9a3"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp37-cp37m-win_amd64.whl", hash = "sha256:5b94529f9b2591b7af5f3e0e730a4e0a41ea174af35a4fd067775f9bdfeee01a"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:11c7de8f692fc99816e8ac50d1d1aef4f75126eefc33ac79aac02c099fd3db71"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:53abb58632235cd154176ced1ae8f0d29a6657aa1aa9decf50b899b755bc2b93"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:88b9f257ca61b838b6f8094a62418421f87ac2a1069f7e896c36a7d86b5d4c29"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3195782b26fc03aa9c6913d5bad5aeb864bdc372924c093b0f1cebad603dd712"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc579bf0f502e54926519451b920e875f433aceb4624a3646b3252b5caa9e0b6"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a580c91d686376f0f7c295357595c5a026e6cbc3d77b7c36e290201e7c11ecb"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:cfe6ab8da05c01ba6fbea630377b5da2cd9bcbc6338510116b01c1bc939a2c18"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:d2e5a98f0ec99beb3c10e13b387f8db39106d53993f498b295f0c914328b1333"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:a51a263952b1429e429ff236d2f5a21c5125437861baeed77f5e1cc2d2c7c6da"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:3edd2fa14e68c9be82c5b16689e8d63d89fe927e56debd6e1dbce7a26a17f81b"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:74d1b44c6cfc897df648cc9fdaa09bc3e7679926e6f96df05775d4fb3946571c"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:76d9289ed3f7501012e05abb8358bbb129149dbd173f1f57a1bf1c22d19ab7cc"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:92dea1ffe3714fa8eb6a314d2b3c773208d865a0e0d35e713ec54eea08a66250"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp38-cp38-win32.whl", hash = "sha256:5c90ae8c8d32e472be041e76f9d2f2dbff4d0b0be8bd4041770eddb18cf49a4e"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp38-cp38-win_amd64.whl", hash = "sha256:c7940c1dc63eb37a67721b10d703247552416f719c4188c54e04334321351ced"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:9407b6a5f0d675e8a827ad8742e1d6b49d9c1a1da5d952a67d50ef5f4170b18d"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:15568384086b6df3c65353820a4473575dbad192e35010f622c6ce3eebd57af9"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0dc9db8e79f0036e8173c466d21ef18e1befc02de8bf8aa8dc0813a6dc8a7046"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:cdc8a402aaee9a798b50d8b827d7ecf75edc5fb35ea0f91f213ff927c15f4ff0"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6c3bd3cde54cafb87d74d8db50b909705c62b17c2099b8f2e25b461882e544ff"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:955e8513d07a283056b1396e9a57ceddbd272d9252c14f154d450d227606eb54"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:346f5343b9e3f00b8db8ba359350eb124b98c99efd0b408728ac6ebf38173958"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b9098e0049e88c6a24ff64545cdfc50807818ba6c1b739cae221bbbcbc58aad3"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:00bd361b903dc4bbf4eb165f24d1acbee754fce22ded24c3d56eec268658a5cf"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7b8b454bac16428b22560d0a1cf0a09875339cab69df61d7805bf48919415901"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:f1d072c2eb0ad60d4c183f3fb44ac6f73fb7a8f16a2694a91f988275cbf352f9"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:31a82d498054cac9f6d0b53d02bb85811185bcb477d4b60144f915f3b3126342"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6512cb89e334e4700febbffaaa52761b65b4f5a3cf33f960213d5656cea36a77"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp39-cp39-win32.whl", hash = "sha256:9db8ea4c388fdb0f780fe91346fd438657ea602d58348753d9fb265ce1bca67f"},
|
||||||
|
{file = "kiwisolver-1.4.5-cp39-cp39-win_amd64.whl", hash = "sha256:59415f46a37f7f2efeec758353dd2eae1b07640d8ca0f0c42548ec4125492635"},
|
||||||
|
{file = "kiwisolver-1.4.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:5c7b3b3a728dc6faf3fc372ef24f21d1e3cee2ac3e9596691d746e5a536de920"},
|
||||||
|
{file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:620ced262a86244e2be10a676b646f29c34537d0d9cc8eb26c08f53d98013390"},
|
||||||
|
{file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:378a214a1e3bbf5ac4a8708304318b4f890da88c9e6a07699c4ae7174c09a68d"},
|
||||||
|
{file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaf7be1207676ac608a50cd08f102f6742dbfc70e8d60c4db1c6897f62f71523"},
|
||||||
|
{file = "kiwisolver-1.4.5-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:ba55dce0a9b8ff59495ddd050a0225d58bd0983d09f87cfe2b6aec4f2c1234e4"},
|
||||||
|
{file = "kiwisolver-1.4.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:fd32ea360bcbb92d28933fc05ed09bffcb1704ba3fc7942e81db0fd4f81a7892"},
|
||||||
|
{file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:5e7139af55d1688f8b960ee9ad5adafc4ac17c1c473fe07133ac092310d76544"},
|
||||||
|
{file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dced8146011d2bc2e883f9bd68618b8247387f4bbec46d7392b3c3b032640126"},
|
||||||
|
{file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c9bf3325c47b11b2e51bca0824ea217c7cd84491d8ac4eefd1e409705ef092bd"},
|
||||||
|
{file = "kiwisolver-1.4.5-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5794cf59533bc3f1b1c821f7206a3617999db9fbefc345360aafe2e067514929"},
|
||||||
|
{file = "kiwisolver-1.4.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e368f200bbc2e4f905b8e71eb38b3c04333bddaa6a2464a6355487b02bb7fb09"},
|
||||||
|
{file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e5d706eba36b4c4d5bc6c6377bb6568098765e990cfc21ee16d13963fab7b3e7"},
|
||||||
|
{file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:85267bd1aa8880a9c88a8cb71e18d3d64d2751a790e6ca6c27b8ccc724bcd5ad"},
|
||||||
|
{file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:210ef2c3a1f03272649aff1ef992df2e724748918c4bc2d5a90352849eb40bea"},
|
||||||
|
{file = "kiwisolver-1.4.5-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:11d011a7574eb3b82bcc9c1a1d35c1d7075677fdd15de527d91b46bd35e935ee"},
|
||||||
|
{file = "kiwisolver-1.4.5.tar.gz", hash = "sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec"},
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "matplotlib"
|
||||||
|
version = "3.9.0"
|
||||||
|
description = "Python plotting package"
|
||||||
|
optional = false
|
||||||
|
python-versions = ">=3.9"
|
||||||
|
files = [
|
||||||
|
{file = "matplotlib-3.9.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:2bcee1dffaf60fe7656183ac2190bd630842ff87b3153afb3e384d966b57fe56"},
|
||||||
|
{file = "matplotlib-3.9.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3f988bafb0fa39d1074ddd5bacd958c853e11def40800c5824556eb630f94d3b"},
|
||||||
|
{file = "matplotlib-3.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fe428e191ea016bb278758c8ee82a8129c51d81d8c4bc0846c09e7e8e9057241"},
|
||||||
|
{file = "matplotlib-3.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eaf3978060a106fab40c328778b148f590e27f6fa3cd15a19d6892575bce387d"},
|
||||||
|
{file = "matplotlib-3.9.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:2e7f03e5cbbfacdd48c8ea394d365d91ee8f3cae7e6ec611409927b5ed997ee4"},
|
||||||
|
{file = "matplotlib-3.9.0-cp310-cp310-win_amd64.whl", hash = "sha256:13beb4840317d45ffd4183a778685e215939be7b08616f431c7795276e067463"},
|
||||||
|
{file = "matplotlib-3.9.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:063af8587fceeac13b0936c42a2b6c732c2ab1c98d38abc3337e430e1ff75e38"},
|
||||||
|
{file = "matplotlib-3.9.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:9a2fa6d899e17ddca6d6526cf6e7ba677738bf2a6a9590d702c277204a7c6152"},
|
||||||
|
{file = "matplotlib-3.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:550cdda3adbd596078cca7d13ed50b77879104e2e46392dcd7c75259d8f00e85"},
|
||||||
|
{file = "matplotlib-3.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:76cce0f31b351e3551d1f3779420cf8f6ec0d4a8cf9c0237a3b549fd28eb4abb"},
|
||||||
|
{file = "matplotlib-3.9.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:c53aeb514ccbbcbab55a27f912d79ea30ab21ee0531ee2c09f13800efb272674"},
|
||||||
|
{file = "matplotlib-3.9.0-cp311-cp311-win_amd64.whl", hash = "sha256:a5be985db2596d761cdf0c2eaf52396f26e6a64ab46bd8cd810c48972349d1be"},
|
||||||
|
{file = "matplotlib-3.9.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:c79f3a585f1368da6049318bdf1f85568d8d04b2e89fc24b7e02cc9b62017382"},
|
||||||
|
{file = "matplotlib-3.9.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:bdd1ecbe268eb3e7653e04f451635f0fb0f77f07fd070242b44c076c9106da84"},
|
||||||
|
{file = "matplotlib-3.9.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d38e85a1a6d732f645f1403ce5e6727fd9418cd4574521d5803d3d94911038e5"},
|
||||||
|
{file = "matplotlib-3.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0a490715b3b9984fa609116481b22178348c1a220a4499cda79132000a79b4db"},
|
||||||
|
{file = "matplotlib-3.9.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8146ce83cbc5dc71c223a74a1996d446cd35cfb6a04b683e1446b7e6c73603b7"},
|
||||||
|
{file = "matplotlib-3.9.0-cp312-cp312-win_amd64.whl", hash = "sha256:d91a4ffc587bacf5c4ce4ecfe4bcd23a4b675e76315f2866e588686cc97fccdf"},
|
||||||
|
{file = "matplotlib-3.9.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:616fabf4981a3b3c5a15cd95eba359c8489c4e20e03717aea42866d8d0465956"},
|
||||||
|
{file = "matplotlib-3.9.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:cd53c79fd02f1c1808d2cfc87dd3cf4dbc63c5244a58ee7944497107469c8d8a"},
|
||||||
|
{file = "matplotlib-3.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:06a478f0d67636554fa78558cfbcd7b9dba85b51f5c3b5a0c9be49010cf5f321"},
|
||||||
|
{file = "matplotlib-3.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:81c40af649d19c85f8073e25e5806926986806fa6d54be506fbf02aef47d5a89"},
|
||||||
|
{file = "matplotlib-3.9.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:52146fc3bd7813cc784562cb93a15788be0b2875c4655e2cc6ea646bfa30344b"},
|
||||||
|
{file = "matplotlib-3.9.0-cp39-cp39-win_amd64.whl", hash = "sha256:0fc51eaa5262553868461c083d9adadb11a6017315f3a757fc45ec6ec5f02888"},
|
||||||
|
{file = "matplotlib-3.9.0-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:bd4f2831168afac55b881db82a7730992aa41c4f007f1913465fb182d6fb20c0"},
|
||||||
|
{file = "matplotlib-3.9.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:290d304e59be2b33ef5c2d768d0237f5bd132986bdcc66f80bc9bcc300066a03"},
|
||||||
|
{file = "matplotlib-3.9.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ff2e239c26be4f24bfa45860c20ffccd118d270c5b5d081fa4ea409b5469fcd"},
|
||||||
|
{file = "matplotlib-3.9.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:af4001b7cae70f7eaacfb063db605280058246de590fa7874f00f62259f2df7e"},
|
||||||
|
{file = "matplotlib-3.9.0.tar.gz", hash = "sha256:e6d29ea6c19e34b30fb7d88b7081f869a03014f66fe06d62cc77d5a6ea88ed7a"},
|
||||||
|
]
|
||||||
|
|
||||||
|
[package.dependencies]
|
||||||
|
contourpy = ">=1.0.1"
|
||||||
|
cycler = ">=0.10"
|
||||||
|
fonttools = ">=4.22.0"
|
||||||
|
kiwisolver = ">=1.3.1"
|
||||||
|
numpy = ">=1.23"
|
||||||
|
packaging = ">=20.0"
|
||||||
|
pillow = ">=8"
|
||||||
|
pyparsing = ">=2.3.1"
|
||||||
|
python-dateutil = ">=2.7"
|
||||||
|
|
||||||
|
[package.extras]
|
||||||
|
dev = ["meson-python (>=0.13.1)", "numpy (>=1.25)", "pybind11 (>=2.6)", "setuptools (>=64)", "setuptools_scm (>=7)"]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "numpy"
|
||||||
|
version = "2.0.0"
|
||||||
|
description = "Fundamental package for array computing in Python"
|
||||||
|
optional = false
|
||||||
|
python-versions = ">=3.9"
|
||||||
|
files = [
|
||||||
|
{file = "numpy-2.0.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:04494f6ec467ccb5369d1808570ae55f6ed9b5809d7f035059000a37b8d7e86f"},
|
||||||
|
{file = "numpy-2.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2635dbd200c2d6faf2ef9a0d04f0ecc6b13b3cad54f7c67c61155138835515d2"},
|
||||||
|
{file = "numpy-2.0.0-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:0a43f0974d501842866cc83471bdb0116ba0dffdbaac33ec05e6afed5b615238"},
|
||||||
|
{file = "numpy-2.0.0-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:8d83bb187fb647643bd56e1ae43f273c7f4dbcdf94550d7938cfc32566756514"},
|
||||||
|
{file = "numpy-2.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79e843d186c8fb1b102bef3e2bc35ef81160ffef3194646a7fdd6a73c6b97196"},
|
||||||
|
{file = "numpy-2.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6d7696c615765091cc5093f76fd1fa069870304beaccfd58b5dcc69e55ef49c1"},
|
||||||
|
{file = "numpy-2.0.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b4c76e3d4c56f145d41b7b6751255feefae92edbc9a61e1758a98204200f30fc"},
|
||||||
|
{file = "numpy-2.0.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:acd3a644e4807e73b4e1867b769fbf1ce8c5d80e7caaef0d90dcdc640dfc9787"},
|
||||||
|
{file = "numpy-2.0.0-cp310-cp310-win32.whl", hash = "sha256:cee6cc0584f71adefe2c908856ccc98702baf95ff80092e4ca46061538a2ba98"},
|
||||||
|
{file = "numpy-2.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:ed08d2703b5972ec736451b818c2eb9da80d66c3e84aed1deeb0c345fefe461b"},
|
||||||
|
{file = "numpy-2.0.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ad0c86f3455fbd0de6c31a3056eb822fc939f81b1618f10ff3406971893b62a5"},
|
||||||
|
{file = "numpy-2.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e7f387600d424f91576af20518334df3d97bc76a300a755f9a8d6e4f5cadd289"},
|
||||||
|
{file = "numpy-2.0.0-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:34f003cb88b1ba38cb9a9a4a3161c1604973d7f9d5552c38bc2f04f829536609"},
|
||||||
|
{file = "numpy-2.0.0-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:b6f6a8f45d0313db07d6d1d37bd0b112f887e1369758a5419c0370ba915b3871"},
|
||||||
|
{file = "numpy-2.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f64641b42b2429f56ee08b4f427a4d2daf916ec59686061de751a55aafa22e4"},
|
||||||
|
{file = "numpy-2.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a7039a136017eaa92c1848152827e1424701532ca8e8967fe480fe1569dae581"},
|
||||||
|
{file = "numpy-2.0.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:46e161722e0f619749d1cd892167039015b2c2817296104487cd03ed4a955995"},
|
||||||
|
{file = "numpy-2.0.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:0e50842b2295ba8414c8c1d9d957083d5dfe9e16828b37de883f51fc53c4016f"},
|
||||||
|
{file = "numpy-2.0.0-cp311-cp311-win32.whl", hash = "sha256:2ce46fd0b8a0c947ae047d222f7136fc4d55538741373107574271bc00e20e8f"},
|
||||||
|
{file = "numpy-2.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:fbd6acc766814ea6443628f4e6751d0da6593dae29c08c0b2606164db026970c"},
|
||||||
|
{file = "numpy-2.0.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:354f373279768fa5a584bac997de6a6c9bc535c482592d7a813bb0c09be6c76f"},
|
||||||
|
{file = "numpy-2.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4d2f62e55a4cd9c58c1d9a1c9edaedcd857a73cb6fda875bf79093f9d9086f85"},
|
||||||
|
{file = "numpy-2.0.0-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:1e72728e7501a450288fc8e1f9ebc73d90cfd4671ebbd631f3e7857c39bd16f2"},
|
||||||
|
{file = "numpy-2.0.0-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:84554fc53daa8f6abf8e8a66e076aff6ece62de68523d9f665f32d2fc50fd66e"},
|
||||||
|
{file = "numpy-2.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c73aafd1afca80afecb22718f8700b40ac7cab927b8abab3c3e337d70e10e5a2"},
|
||||||
|
{file = "numpy-2.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:49d9f7d256fbc804391a7f72d4a617302b1afac1112fac19b6c6cec63fe7fe8a"},
|
||||||
|
{file = "numpy-2.0.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:0ec84b9ba0654f3b962802edc91424331f423dcf5d5f926676e0150789cb3d95"},
|
||||||
|
{file = "numpy-2.0.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:feff59f27338135776f6d4e2ec7aeeac5d5f7a08a83e80869121ef8164b74af9"},
|
||||||
|
{file = "numpy-2.0.0-cp312-cp312-win32.whl", hash = "sha256:c5a59996dc61835133b56a32ebe4ef3740ea5bc19b3983ac60cc32be5a665d54"},
|
||||||
|
{file = "numpy-2.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:a356364941fb0593bb899a1076b92dfa2029f6f5b8ba88a14fd0984aaf76d0df"},
|
||||||
|
{file = "numpy-2.0.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e61155fae27570692ad1d327e81c6cf27d535a5d7ef97648a17d922224b216de"},
|
||||||
|
{file = "numpy-2.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4554eb96f0fd263041baf16cf0881b3f5dafae7a59b1049acb9540c4d57bc8cb"},
|
||||||
|
{file = "numpy-2.0.0-cp39-cp39-macosx_14_0_arm64.whl", hash = "sha256:903703372d46bce88b6920a0cd86c3ad82dae2dbef157b5fc01b70ea1cfc430f"},
|
||||||
|
{file = "numpy-2.0.0-cp39-cp39-macosx_14_0_x86_64.whl", hash = "sha256:3e8e01233d57639b2e30966c63d36fcea099d17c53bf424d77f088b0f4babd86"},
|
||||||
|
{file = "numpy-2.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1cde1753efe513705a0c6d28f5884e22bdc30438bf0085c5c486cdaff40cd67a"},
|
||||||
|
{file = "numpy-2.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:821eedb7165ead9eebdb569986968b541f9908979c2da8a4967ecac4439bae3d"},
|
||||||
|
{file = "numpy-2.0.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:9a1712c015831da583b21c5bfe15e8684137097969c6d22e8316ba66b5baabe4"},
|
||||||
|
{file = "numpy-2.0.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:9c27f0946a3536403efb0e1c28def1ae6730a72cd0d5878db38824855e3afc44"},
|
||||||
|
{file = "numpy-2.0.0-cp39-cp39-win32.whl", hash = "sha256:63b92c512d9dbcc37f9d81b123dec99fdb318ba38c8059afc78086fe73820275"},
|
||||||
|
{file = "numpy-2.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:3f6bed7f840d44c08ebdb73b1825282b801799e325bcbdfa6bc5c370e5aecc65"},
|
||||||
|
{file = "numpy-2.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:9416a5c2e92ace094e9f0082c5fd473502c91651fb896bc17690d6fc475128d6"},
|
||||||
|
{file = "numpy-2.0.0-pp39-pypy39_pp73-macosx_14_0_x86_64.whl", hash = "sha256:17067d097ed036636fa79f6a869ac26df7db1ba22039d962422506640314933a"},
|
||||||
|
{file = "numpy-2.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:38ecb5b0582cd125f67a629072fed6f83562d9dd04d7e03256c9829bdec027ad"},
|
||||||
|
{file = "numpy-2.0.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:cef04d068f5fb0518a77857953193b6bb94809a806bd0a14983a8f12ada060c9"},
|
||||||
|
{file = "numpy-2.0.0.tar.gz", hash = "sha256:cf5d1c9e6837f8af9f92b6bd3e86d513cdc11f60fd62185cc49ec7d1aba34864"},
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "packaging"
|
||||||
|
version = "24.1"
|
||||||
|
description = "Core utilities for Python packages"
|
||||||
|
optional = false
|
||||||
|
python-versions = ">=3.8"
|
||||||
|
files = [
|
||||||
|
{file = "packaging-24.1-py3-none-any.whl", hash = "sha256:5b8f2217dbdbd2f7f384c41c628544e6d52f2d0f53c6d0c3ea61aa5d1d7ff124"},
|
||||||
|
{file = "packaging-24.1.tar.gz", hash = "sha256:026ed72c8ed3fcce5bf8950572258698927fd1dbda10a5e981cdf0ac37f4f002"},
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "pandas"
|
||||||
|
version = "2.2.2"
|
||||||
|
description = "Powerful data structures for data analysis, time series, and statistics"
|
||||||
|
optional = false
|
||||||
|
python-versions = ">=3.9"
|
||||||
|
files = [
|
||||||
|
{file = "pandas-2.2.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:90c6fca2acf139569e74e8781709dccb6fe25940488755716d1d354d6bc58bce"},
|
||||||
|
{file = "pandas-2.2.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c7adfc142dac335d8c1e0dcbd37eb8617eac386596eb9e1a1b77791cf2498238"},
|
||||||
|
{file = "pandas-2.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4abfe0be0d7221be4f12552995e58723c7422c80a659da13ca382697de830c08"},
|
||||||
|
{file = "pandas-2.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8635c16bf3d99040fdf3ca3db669a7250ddf49c55dc4aa8fe0ae0fa8d6dcc1f0"},
|
||||||
|
{file = "pandas-2.2.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:40ae1dffb3967a52203105a077415a86044a2bea011b5f321c6aa64b379a3f51"},
|
||||||
|
{file = "pandas-2.2.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8e5a0b00e1e56a842f922e7fae8ae4077aee4af0acb5ae3622bd4b4c30aedf99"},
|
||||||
|
{file = "pandas-2.2.2-cp310-cp310-win_amd64.whl", hash = "sha256:ddf818e4e6c7c6f4f7c8a12709696d193976b591cc7dc50588d3d1a6b5dc8772"},
|
||||||
|
{file = "pandas-2.2.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:696039430f7a562b74fa45f540aca068ea85fa34c244d0deee539cb6d70aa288"},
|
||||||
|
{file = "pandas-2.2.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8e90497254aacacbc4ea6ae5e7a8cd75629d6ad2b30025a4a8b09aa4faf55151"},
|
||||||
|
{file = "pandas-2.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:58b84b91b0b9f4bafac2a0ac55002280c094dfc6402402332c0913a59654ab2b"},
|
||||||
|
{file = "pandas-2.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6d2123dc9ad6a814bcdea0f099885276b31b24f7edf40f6cdbc0912672e22eee"},
|
||||||
|
{file = "pandas-2.2.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:2925720037f06e89af896c70bca73459d7e6a4be96f9de79e2d440bd499fe0db"},
|
||||||
|
{file = "pandas-2.2.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:0cace394b6ea70c01ca1595f839cf193df35d1575986e484ad35c4aeae7266c1"},
|
||||||
|
{file = "pandas-2.2.2-cp311-cp311-win_amd64.whl", hash = "sha256:873d13d177501a28b2756375d59816c365e42ed8417b41665f346289adc68d24"},
|
||||||
|
{file = "pandas-2.2.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:9dfde2a0ddef507a631dc9dc4af6a9489d5e2e740e226ad426a05cabfbd7c8ef"},
|
||||||
|
{file = "pandas-2.2.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:e9b79011ff7a0f4b1d6da6a61aa1aa604fb312d6647de5bad20013682d1429ce"},
|
||||||
|
{file = "pandas-2.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1cb51fe389360f3b5a4d57dbd2848a5f033350336ca3b340d1c53a1fad33bcad"},
|
||||||
|
{file = "pandas-2.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eee3a87076c0756de40b05c5e9a6069c035ba43e8dd71c379e68cab2c20f16ad"},
|
||||||
|
{file = "pandas-2.2.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:3e374f59e440d4ab45ca2fffde54b81ac3834cf5ae2cdfa69c90bc03bde04d76"},
|
||||||
|
{file = "pandas-2.2.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:43498c0bdb43d55cb162cdc8c06fac328ccb5d2eabe3cadeb3529ae6f0517c32"},
|
||||||
|
{file = "pandas-2.2.2-cp312-cp312-win_amd64.whl", hash = "sha256:d187d355ecec3629624fccb01d104da7d7f391db0311145817525281e2804d23"},
|
||||||
|
{file = "pandas-2.2.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:0ca6377b8fca51815f382bd0b697a0814c8bda55115678cbc94c30aacbb6eff2"},
|
||||||
|
{file = "pandas-2.2.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9057e6aa78a584bc93a13f0a9bf7e753a5e9770a30b4d758b8d5f2a62a9433cd"},
|
||||||
|
{file = "pandas-2.2.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:001910ad31abc7bf06f49dcc903755d2f7f3a9186c0c040b827e522e9cef0863"},
|
||||||
|
{file = "pandas-2.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:66b479b0bd07204e37583c191535505410daa8df638fd8e75ae1b383851fe921"},
|
||||||
|
{file = "pandas-2.2.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a77e9d1c386196879aa5eb712e77461aaee433e54c68cf253053a73b7e49c33a"},
|
||||||
|
{file = "pandas-2.2.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:92fd6b027924a7e178ac202cfbe25e53368db90d56872d20ffae94b96c7acc57"},
|
||||||
|
{file = "pandas-2.2.2-cp39-cp39-win_amd64.whl", hash = "sha256:640cef9aa381b60e296db324337a554aeeb883ead99dc8f6c18e81a93942f5f4"},
|
||||||
|
{file = "pandas-2.2.2.tar.gz", hash = "sha256:9e79019aba43cb4fda9e4d983f8e88ca0373adbb697ae9c6c43093218de28b54"},
|
||||||
|
]
|
||||||
|
|
||||||
|
[package.dependencies]
|
||||||
|
numpy = [
|
||||||
|
{version = ">=1.23.2", markers = "python_version == \"3.11\""},
|
||||||
|
{version = ">=1.26.0", markers = "python_version >= \"3.12\""},
|
||||||
|
]
|
||||||
|
python-dateutil = ">=2.8.2"
|
||||||
|
pytz = ">=2020.1"
|
||||||
|
tzdata = ">=2022.7"
|
||||||
|
|
||||||
|
[package.extras]
|
||||||
|
all = ["PyQt5 (>=5.15.9)", "SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-driver-sqlite (>=0.8.0)", "beautifulsoup4 (>=4.11.2)", "bottleneck (>=1.3.6)", "dataframe-api-compat (>=0.1.7)", "fastparquet (>=2022.12.0)", "fsspec (>=2022.11.0)", "gcsfs (>=2022.11.0)", "html5lib (>=1.1)", "hypothesis (>=6.46.1)", "jinja2 (>=3.1.2)", "lxml (>=4.9.2)", "matplotlib (>=3.6.3)", "numba (>=0.56.4)", "numexpr (>=2.8.4)", "odfpy (>=1.4.1)", "openpyxl (>=3.1.0)", "pandas-gbq (>=0.19.0)", "psycopg2 (>=2.9.6)", "pyarrow (>=10.0.1)", "pymysql (>=1.0.2)", "pyreadstat (>=1.2.0)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)", "python-calamine (>=0.1.7)", "pyxlsb (>=1.0.10)", "qtpy (>=2.3.0)", "s3fs (>=2022.11.0)", "scipy (>=1.10.0)", "tables (>=3.8.0)", "tabulate (>=0.9.0)", "xarray (>=2022.12.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.5)", "zstandard (>=0.19.0)"]
|
||||||
|
aws = ["s3fs (>=2022.11.0)"]
|
||||||
|
clipboard = ["PyQt5 (>=5.15.9)", "qtpy (>=2.3.0)"]
|
||||||
|
compression = ["zstandard (>=0.19.0)"]
|
||||||
|
computation = ["scipy (>=1.10.0)", "xarray (>=2022.12.0)"]
|
||||||
|
consortium-standard = ["dataframe-api-compat (>=0.1.7)"]
|
||||||
|
excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.1.0)", "python-calamine (>=0.1.7)", "pyxlsb (>=1.0.10)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.5)"]
|
||||||
|
feather = ["pyarrow (>=10.0.1)"]
|
||||||
|
fss = ["fsspec (>=2022.11.0)"]
|
||||||
|
gcp = ["gcsfs (>=2022.11.0)", "pandas-gbq (>=0.19.0)"]
|
||||||
|
hdf5 = ["tables (>=3.8.0)"]
|
||||||
|
html = ["beautifulsoup4 (>=4.11.2)", "html5lib (>=1.1)", "lxml (>=4.9.2)"]
|
||||||
|
mysql = ["SQLAlchemy (>=2.0.0)", "pymysql (>=1.0.2)"]
|
||||||
|
output-formatting = ["jinja2 (>=3.1.2)", "tabulate (>=0.9.0)"]
|
||||||
|
parquet = ["pyarrow (>=10.0.1)"]
|
||||||
|
performance = ["bottleneck (>=1.3.6)", "numba (>=0.56.4)", "numexpr (>=2.8.4)"]
|
||||||
|
plot = ["matplotlib (>=3.6.3)"]
|
||||||
|
postgresql = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "psycopg2 (>=2.9.6)"]
|
||||||
|
pyarrow = ["pyarrow (>=10.0.1)"]
|
||||||
|
spss = ["pyreadstat (>=1.2.0)"]
|
||||||
|
sql-other = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-driver-sqlite (>=0.8.0)"]
|
||||||
|
test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)"]
|
||||||
|
xml = ["lxml (>=4.9.2)"]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "pillow"
|
||||||
|
version = "10.3.0"
|
||||||
|
description = "Python Imaging Library (Fork)"
|
||||||
|
optional = false
|
||||||
|
python-versions = ">=3.8"
|
||||||
|
files = [
|
||||||
|
{file = "pillow-10.3.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:90b9e29824800e90c84e4022dd5cc16eb2d9605ee13f05d47641eb183cd73d45"},
|
||||||
|
{file = "pillow-10.3.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a2c405445c79c3f5a124573a051062300936b0281fee57637e706453e452746c"},
|
||||||
|
{file = "pillow-10.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:78618cdbccaa74d3f88d0ad6cb8ac3007f1a6fa5c6f19af64b55ca170bfa1edf"},
|
||||||
|
{file = "pillow-10.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:261ddb7ca91fcf71757979534fb4c128448b5b4c55cb6152d280312062f69599"},
|
||||||
|
{file = "pillow-10.3.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:ce49c67f4ea0609933d01c0731b34b8695a7a748d6c8d186f95e7d085d2fe475"},
|
||||||
|
{file = "pillow-10.3.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:b14f16f94cbc61215115b9b1236f9c18403c15dd3c52cf629072afa9d54c1cbf"},
|
||||||
|
{file = "pillow-10.3.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d33891be6df59d93df4d846640f0e46f1a807339f09e79a8040bc887bdcd7ed3"},
|
||||||
|
{file = "pillow-10.3.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b50811d664d392f02f7761621303eba9d1b056fb1868c8cdf4231279645c25f5"},
|
||||||
|
{file = "pillow-10.3.0-cp310-cp310-win32.whl", hash = "sha256:ca2870d5d10d8726a27396d3ca4cf7976cec0f3cb706debe88e3a5bd4610f7d2"},
|
||||||
|
{file = "pillow-10.3.0-cp310-cp310-win_amd64.whl", hash = "sha256:f0d0591a0aeaefdaf9a5e545e7485f89910c977087e7de2b6c388aec32011e9f"},
|
||||||
|
{file = "pillow-10.3.0-cp310-cp310-win_arm64.whl", hash = "sha256:ccce24b7ad89adb5a1e34a6ba96ac2530046763912806ad4c247356a8f33a67b"},
|
||||||
|
{file = "pillow-10.3.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:5f77cf66e96ae734717d341c145c5949c63180842a545c47a0ce7ae52ca83795"},
|
||||||
|
{file = "pillow-10.3.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e4b878386c4bf293578b48fc570b84ecfe477d3b77ba39a6e87150af77f40c57"},
|
||||||
|
{file = "pillow-10.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fdcbb4068117dfd9ce0138d068ac512843c52295ed996ae6dd1faf537b6dbc27"},
|
||||||
|
{file = "pillow-10.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9797a6c8fe16f25749b371c02e2ade0efb51155e767a971c61734b1bf6293994"},
|
||||||
|
{file = "pillow-10.3.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:9e91179a242bbc99be65e139e30690e081fe6cb91a8e77faf4c409653de39451"},
|
||||||
|
{file = "pillow-10.3.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:1b87bd9d81d179bd8ab871603bd80d8645729939f90b71e62914e816a76fc6bd"},
|
||||||
|
{file = "pillow-10.3.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:81d09caa7b27ef4e61cb7d8fbf1714f5aec1c6b6c5270ee53504981e6e9121ad"},
|
||||||
|
{file = "pillow-10.3.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:048ad577748b9fa4a99a0548c64f2cb8d672d5bf2e643a739ac8faff1164238c"},
|
||||||
|
{file = "pillow-10.3.0-cp311-cp311-win32.whl", hash = "sha256:7161ec49ef0800947dc5570f86568a7bb36fa97dd09e9827dc02b718c5643f09"},
|
||||||
|
{file = "pillow-10.3.0-cp311-cp311-win_amd64.whl", hash = "sha256:8eb0908e954d093b02a543dc963984d6e99ad2b5e36503d8a0aaf040505f747d"},
|
||||||
|
{file = "pillow-10.3.0-cp311-cp311-win_arm64.whl", hash = "sha256:4e6f7d1c414191c1199f8996d3f2282b9ebea0945693fb67392c75a3a320941f"},
|
||||||
|
{file = "pillow-10.3.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:e46f38133e5a060d46bd630faa4d9fa0202377495df1f068a8299fd78c84de84"},
|
||||||
|
{file = "pillow-10.3.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:50b8eae8f7334ec826d6eeffaeeb00e36b5e24aa0b9df322c247539714c6df19"},
|
||||||
|
{file = "pillow-10.3.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9d3bea1c75f8c53ee4d505c3e67d8c158ad4df0d83170605b50b64025917f338"},
|
||||||
|
{file = "pillow-10.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:19aeb96d43902f0a783946a0a87dbdad5c84c936025b8419da0a0cd7724356b1"},
|
||||||
|
{file = "pillow-10.3.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:74d28c17412d9caa1066f7a31df8403ec23d5268ba46cd0ad2c50fb82ae40462"},
|
||||||
|
{file = "pillow-10.3.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:ff61bfd9253c3915e6d41c651d5f962da23eda633cf02262990094a18a55371a"},
|
||||||
|
{file = "pillow-10.3.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d886f5d353333b4771d21267c7ecc75b710f1a73d72d03ca06df49b09015a9ef"},
|
||||||
|
{file = "pillow-10.3.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4b5ec25d8b17217d635f8935dbc1b9aa5907962fae29dff220f2659487891cd3"},
|
||||||
|
{file = "pillow-10.3.0-cp312-cp312-win32.whl", hash = "sha256:51243f1ed5161b9945011a7360e997729776f6e5d7005ba0c6879267d4c5139d"},
|
||||||
|
{file = "pillow-10.3.0-cp312-cp312-win_amd64.whl", hash = "sha256:412444afb8c4c7a6cc11a47dade32982439925537e483be7c0ae0cf96c4f6a0b"},
|
||||||
|
{file = "pillow-10.3.0-cp312-cp312-win_arm64.whl", hash = "sha256:798232c92e7665fe82ac085f9d8e8ca98826f8e27859d9a96b41d519ecd2e49a"},
|
||||||
|
{file = "pillow-10.3.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:4eaa22f0d22b1a7e93ff0a596d57fdede2e550aecffb5a1ef1106aaece48e96b"},
|
||||||
|
{file = "pillow-10.3.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:cd5e14fbf22a87321b24c88669aad3a51ec052eb145315b3da3b7e3cc105b9a2"},
|
||||||
|
{file = "pillow-10.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1530e8f3a4b965eb6a7785cf17a426c779333eb62c9a7d1bbcf3ffd5bf77a4aa"},
|
||||||
|
{file = "pillow-10.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d512aafa1d32efa014fa041d38868fda85028e3f930a96f85d49c7d8ddc0383"},
|
||||||
|
{file = "pillow-10.3.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:339894035d0ede518b16073bdc2feef4c991ee991a29774b33e515f1d308e08d"},
|
||||||
|
{file = "pillow-10.3.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:aa7e402ce11f0885305bfb6afb3434b3cd8f53b563ac065452d9d5654c7b86fd"},
|
||||||
|
{file = "pillow-10.3.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:0ea2a783a2bdf2a561808fe4a7a12e9aa3799b701ba305de596bc48b8bdfce9d"},
|
||||||
|
{file = "pillow-10.3.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:c78e1b00a87ce43bb37642c0812315b411e856a905d58d597750eb79802aaaa3"},
|
||||||
|
{file = "pillow-10.3.0-cp38-cp38-win32.whl", hash = "sha256:72d622d262e463dfb7595202d229f5f3ab4b852289a1cd09650362db23b9eb0b"},
|
||||||
|
{file = "pillow-10.3.0-cp38-cp38-win_amd64.whl", hash = "sha256:2034f6759a722da3a3dbd91a81148cf884e91d1b747992ca288ab88c1de15999"},
|
||||||
|
{file = "pillow-10.3.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:2ed854e716a89b1afcedea551cd85f2eb2a807613752ab997b9974aaa0d56936"},
|
||||||
|
{file = "pillow-10.3.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:dc1a390a82755a8c26c9964d457d4c9cbec5405896cba94cf51f36ea0d855002"},
|
||||||
|
{file = "pillow-10.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4203efca580f0dd6f882ca211f923168548f7ba334c189e9eab1178ab840bf60"},
|
||||||
|
{file = "pillow-10.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3102045a10945173d38336f6e71a8dc71bcaeed55c3123ad4af82c52807b9375"},
|
||||||
|
{file = "pillow-10.3.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:6fb1b30043271ec92dc65f6d9f0b7a830c210b8a96423074b15c7bc999975f57"},
|
||||||
|
{file = "pillow-10.3.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:1dfc94946bc60ea375cc39cff0b8da6c7e5f8fcdc1d946beb8da5c216156ddd8"},
|
||||||
|
{file = "pillow-10.3.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:b09b86b27a064c9624d0a6c54da01c1beaf5b6cadfa609cf63789b1d08a797b9"},
|
||||||
|
{file = "pillow-10.3.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d3b2348a78bc939b4fed6552abfd2e7988e0f81443ef3911a4b8498ca084f6eb"},
|
||||||
|
{file = "pillow-10.3.0-cp39-cp39-win32.whl", hash = "sha256:45ebc7b45406febf07fef35d856f0293a92e7417ae7933207e90bf9090b70572"},
|
||||||
|
{file = "pillow-10.3.0-cp39-cp39-win_amd64.whl", hash = "sha256:0ba26351b137ca4e0db0342d5d00d2e355eb29372c05afd544ebf47c0956ffeb"},
|
||||||
|
{file = "pillow-10.3.0-cp39-cp39-win_arm64.whl", hash = "sha256:50fd3f6b26e3441ae07b7c979309638b72abc1a25da31a81a7fbd9495713ef4f"},
|
||||||
|
{file = "pillow-10.3.0-pp310-pypy310_pp73-macosx_10_10_x86_64.whl", hash = "sha256:6b02471b72526ab8a18c39cb7967b72d194ec53c1fd0a70b050565a0f366d355"},
|
||||||
|
{file = "pillow-10.3.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8ab74c06ffdab957d7670c2a5a6e1a70181cd10b727cd788c4dd9005b6a8acd9"},
|
||||||
|
{file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:048eeade4c33fdf7e08da40ef402e748df113fd0b4584e32c4af74fe78baaeb2"},
|
||||||
|
{file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e2ec1e921fd07c7cda7962bad283acc2f2a9ccc1b971ee4b216b75fad6f0463"},
|
||||||
|
{file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:4c8e73e99da7db1b4cad7f8d682cf6abad7844da39834c288fbfa394a47bbced"},
|
||||||
|
{file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:16563993329b79513f59142a6b02055e10514c1a8e86dca8b48a893e33cf91e3"},
|
||||||
|
{file = "pillow-10.3.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:dd78700f5788ae180b5ee8902c6aea5a5726bac7c364b202b4b3e3ba2d293170"},
|
||||||
|
{file = "pillow-10.3.0-pp39-pypy39_pp73-macosx_10_10_x86_64.whl", hash = "sha256:aff76a55a8aa8364d25400a210a65ff59d0168e0b4285ba6bf2bd83cf675ba32"},
|
||||||
|
{file = "pillow-10.3.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:b7bc2176354defba3edc2b9a777744462da2f8e921fbaf61e52acb95bafa9828"},
|
||||||
|
{file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:793b4e24db2e8742ca6423d3fde8396db336698c55cd34b660663ee9e45ed37f"},
|
||||||
|
{file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d93480005693d247f8346bc8ee28c72a2191bdf1f6b5db469c096c0c867ac015"},
|
||||||
|
{file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:c83341b89884e2b2e55886e8fbbf37c3fa5efd6c8907124aeb72f285ae5696e5"},
|
||||||
|
{file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:1a1d1915db1a4fdb2754b9de292642a39a7fb28f1736699527bb649484fb966a"},
|
||||||
|
{file = "pillow-10.3.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a0eaa93d054751ee9964afa21c06247779b90440ca41d184aeb5d410f20ff591"},
|
||||||
|
{file = "pillow-10.3.0.tar.gz", hash = "sha256:9d2455fbf44c914840c793e89aa82d0e1763a14253a000743719ae5946814b2d"},
|
||||||
|
]
|
||||||
|
|
||||||
|
[package.extras]
|
||||||
|
docs = ["furo", "olefile", "sphinx (>=2.4)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-removed-in", "sphinxext-opengraph"]
|
||||||
|
fpx = ["olefile"]
|
||||||
|
mic = ["olefile"]
|
||||||
|
tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"]
|
||||||
|
typing = ["typing-extensions"]
|
||||||
|
xmp = ["defusedxml"]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "pyparsing"
|
||||||
|
version = "3.1.2"
|
||||||
|
description = "pyparsing module - Classes and methods to define and execute parsing grammars"
|
||||||
|
optional = false
|
||||||
|
python-versions = ">=3.6.8"
|
||||||
|
files = [
|
||||||
|
{file = "pyparsing-3.1.2-py3-none-any.whl", hash = "sha256:f9db75911801ed778fe61bb643079ff86601aca99fcae6345aa67292038fb742"},
|
||||||
|
{file = "pyparsing-3.1.2.tar.gz", hash = "sha256:a1bac0ce561155ecc3ed78ca94d3c9378656ad4c94c1270de543f621420f94ad"},
|
||||||
|
]
|
||||||
|
|
||||||
|
[package.extras]
|
||||||
|
diagrams = ["jinja2", "railroad-diagrams"]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "python-dateutil"
|
||||||
|
version = "2.9.0.post0"
|
||||||
|
description = "Extensions to the standard Python datetime module"
|
||||||
|
optional = false
|
||||||
|
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7"
|
||||||
|
files = [
|
||||||
|
{file = "python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3"},
|
||||||
|
{file = "python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427"},
|
||||||
|
]
|
||||||
|
|
||||||
|
[package.dependencies]
|
||||||
|
six = ">=1.5"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "pytz"
|
||||||
|
version = "2024.1"
|
||||||
|
description = "World timezone definitions, modern and historical"
|
||||||
|
optional = false
|
||||||
|
python-versions = "*"
|
||||||
|
files = [
|
||||||
|
{file = "pytz-2024.1-py2.py3-none-any.whl", hash = "sha256:328171f4e3623139da4983451950b28e95ac706e13f3f2630a879749e7a8b319"},
|
||||||
|
{file = "pytz-2024.1.tar.gz", hash = "sha256:2a29735ea9c18baf14b448846bde5a48030ed267578472d8955cd0e7443a9812"},
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "scikit-learn"
|
||||||
|
version = "1.5.0"
|
||||||
|
description = "A set of python modules for machine learning and data mining"
|
||||||
|
optional = false
|
||||||
|
python-versions = ">=3.9"
|
||||||
|
files = [
|
||||||
|
{file = "scikit_learn-1.5.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:12e40ac48555e6b551f0a0a5743cc94cc5a765c9513fe708e01f0aa001da2801"},
|
||||||
|
{file = "scikit_learn-1.5.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:f405c4dae288f5f6553b10c4ac9ea7754d5180ec11e296464adb5d6ac68b6ef5"},
|
||||||
|
{file = "scikit_learn-1.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:df8ccabbf583315f13160a4bb06037bde99ea7d8211a69787a6b7c5d4ebb6fc3"},
|
||||||
|
{file = "scikit_learn-1.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c75ea812cd83b1385bbfa94ae971f0d80adb338a9523f6bbcb5e0b0381151d4"},
|
||||||
|
{file = "scikit_learn-1.5.0-cp310-cp310-win_amd64.whl", hash = "sha256:a90c5da84829a0b9b4bf00daf62754b2be741e66b5946911f5bdfaa869fcedd6"},
|
||||||
|
{file = "scikit_learn-1.5.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2a65af2d8a6cce4e163a7951a4cfbfa7fceb2d5c013a4b593686c7f16445cf9d"},
|
||||||
|
{file = "scikit_learn-1.5.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:4c0c56c3005f2ec1db3787aeaabefa96256580678cec783986836fc64f8ff622"},
|
||||||
|
{file = "scikit_learn-1.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f77547165c00625551e5c250cefa3f03f2fc92c5e18668abd90bfc4be2e0bff"},
|
||||||
|
{file = "scikit_learn-1.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:118a8d229a41158c9f90093e46b3737120a165181a1b58c03461447aa4657415"},
|
||||||
|
{file = "scikit_learn-1.5.0-cp311-cp311-win_amd64.whl", hash = "sha256:a03b09f9f7f09ffe8c5efffe2e9de1196c696d811be6798ad5eddf323c6f4d40"},
|
||||||
|
{file = "scikit_learn-1.5.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:460806030c666addee1f074788b3978329a5bfdc9b7d63e7aad3f6d45c67a210"},
|
||||||
|
{file = "scikit_learn-1.5.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:1b94d6440603752b27842eda97f6395f570941857456c606eb1d638efdb38184"},
|
||||||
|
{file = "scikit_learn-1.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d82c2e573f0f2f2f0be897e7a31fcf4e73869247738ab8c3ce7245549af58ab8"},
|
||||||
|
{file = "scikit_learn-1.5.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a3a10e1d9e834e84d05e468ec501a356226338778769317ee0b84043c0d8fb06"},
|
||||||
|
{file = "scikit_learn-1.5.0-cp312-cp312-win_amd64.whl", hash = "sha256:855fc5fa8ed9e4f08291203af3d3e5fbdc4737bd617a371559aaa2088166046e"},
|
||||||
|
{file = "scikit_learn-1.5.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:40fb7d4a9a2db07e6e0cae4dc7bdbb8fada17043bac24104d8165e10e4cff1a2"},
|
||||||
|
{file = "scikit_learn-1.5.0-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:47132440050b1c5beb95f8ba0b2402bbd9057ce96ec0ba86f2f445dd4f34df67"},
|
||||||
|
{file = "scikit_learn-1.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:174beb56e3e881c90424e21f576fa69c4ffcf5174632a79ab4461c4c960315ac"},
|
||||||
|
{file = "scikit_learn-1.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:261fe334ca48f09ed64b8fae13f9b46cc43ac5f580c4a605cbb0a517456c8f71"},
|
||||||
|
{file = "scikit_learn-1.5.0-cp39-cp39-win_amd64.whl", hash = "sha256:057b991ac64b3e75c9c04b5f9395eaf19a6179244c089afdebaad98264bff37c"},
|
||||||
|
{file = "scikit_learn-1.5.0.tar.gz", hash = "sha256:789e3db01c750ed6d496fa2db7d50637857b451e57bcae863bff707c1247bef7"},
|
||||||
|
]
|
||||||
|
|
||||||
|
[package.dependencies]
|
||||||
|
joblib = ">=1.2.0"
|
||||||
|
numpy = ">=1.19.5"
|
||||||
|
scipy = ">=1.6.0"
|
||||||
|
threadpoolctl = ">=3.1.0"
|
||||||
|
|
||||||
|
[package.extras]
|
||||||
|
benchmark = ["matplotlib (>=3.3.4)", "memory_profiler (>=0.57.0)", "pandas (>=1.1.5)"]
|
||||||
|
build = ["cython (>=3.0.10)", "meson-python (>=0.15.0)", "numpy (>=1.19.5)", "scipy (>=1.6.0)"]
|
||||||
|
docs = ["Pillow (>=7.1.2)", "matplotlib (>=3.3.4)", "memory_profiler (>=0.57.0)", "numpydoc (>=1.2.0)", "pandas (>=1.1.5)", "plotly (>=5.14.0)", "polars (>=0.20.23)", "pooch (>=1.6.0)", "scikit-image (>=0.17.2)", "seaborn (>=0.9.0)", "sphinx (>=6.0.0)", "sphinx-copybutton (>=0.5.2)", "sphinx-gallery (>=0.15.0)", "sphinx-prompt (>=1.3.0)", "sphinxext-opengraph (>=0.4.2)"]
|
||||||
|
examples = ["matplotlib (>=3.3.4)", "pandas (>=1.1.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.17.2)", "seaborn (>=0.9.0)"]
|
||||||
|
install = ["joblib (>=1.2.0)", "numpy (>=1.19.5)", "scipy (>=1.6.0)", "threadpoolctl (>=3.1.0)"]
|
||||||
|
maintenance = ["conda-lock (==2.5.6)"]
|
||||||
|
tests = ["black (>=24.3.0)", "matplotlib (>=3.3.4)", "mypy (>=1.9)", "numpydoc (>=1.2.0)", "pandas (>=1.1.5)", "polars (>=0.20.23)", "pooch (>=1.6.0)", "pyamg (>=4.0.0)", "pyarrow (>=12.0.0)", "pytest (>=7.1.2)", "pytest-cov (>=2.9.0)", "ruff (>=0.2.1)", "scikit-image (>=0.17.2)"]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "scipy"
|
||||||
|
version = "1.14.0"
|
||||||
|
description = "Fundamental algorithms for scientific computing in Python"
|
||||||
|
optional = false
|
||||||
|
python-versions = ">=3.10"
|
||||||
|
files = [
|
||||||
|
{file = "scipy-1.14.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:7e911933d54ead4d557c02402710c2396529540b81dd554fc1ba270eb7308484"},
|
||||||
|
{file = "scipy-1.14.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:687af0a35462402dd851726295c1a5ae5f987bd6e9026f52e9505994e2f84ef6"},
|
||||||
|
{file = "scipy-1.14.0-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:07e179dc0205a50721022344fb85074f772eadbda1e1b3eecdc483f8033709b7"},
|
||||||
|
{file = "scipy-1.14.0-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:6a9c9a9b226d9a21e0a208bdb024c3982932e43811b62d202aaf1bb59af264b1"},
|
||||||
|
{file = "scipy-1.14.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:076c27284c768b84a45dcf2e914d4000aac537da74236a0d45d82c6fa4b7b3c0"},
|
||||||
|
{file = "scipy-1.14.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:42470ea0195336df319741e230626b6225a740fd9dce9642ca13e98f667047c0"},
|
||||||
|
{file = "scipy-1.14.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:176c6f0d0470a32f1b2efaf40c3d37a24876cebf447498a4cefb947a79c21e9d"},
|
||||||
|
{file = "scipy-1.14.0-cp310-cp310-win_amd64.whl", hash = "sha256:ad36af9626d27a4326c8e884917b7ec321d8a1841cd6dacc67d2a9e90c2f0359"},
|
||||||
|
{file = "scipy-1.14.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6d056a8709ccda6cf36cdd2eac597d13bc03dba38360f418560a93050c76a16e"},
|
||||||
|
{file = "scipy-1.14.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:f0a50da861a7ec4573b7c716b2ebdcdf142b66b756a0d392c236ae568b3a93fb"},
|
||||||
|
{file = "scipy-1.14.0-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:94c164a9e2498e68308e6e148646e486d979f7fcdb8b4cf34b5441894bdb9caf"},
|
||||||
|
{file = "scipy-1.14.0-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:a7d46c3e0aea5c064e734c3eac5cf9eb1f8c4ceee756262f2c7327c4c2691c86"},
|
||||||
|
{file = "scipy-1.14.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9eee2989868e274aae26125345584254d97c56194c072ed96cb433f32f692ed8"},
|
||||||
|
{file = "scipy-1.14.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e3154691b9f7ed73778d746da2df67a19d046a6c8087c8b385bc4cdb2cfca74"},
|
||||||
|
{file = "scipy-1.14.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:c40003d880f39c11c1edbae8144e3813904b10514cd3d3d00c277ae996488cdb"},
|
||||||
|
{file = "scipy-1.14.0-cp311-cp311-win_amd64.whl", hash = "sha256:5b083c8940028bb7e0b4172acafda6df762da1927b9091f9611b0bcd8676f2bc"},
|
||||||
|
{file = "scipy-1.14.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:bff2438ea1330e06e53c424893ec0072640dac00f29c6a43a575cbae4c99b2b9"},
|
||||||
|
{file = "scipy-1.14.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:bbc0471b5f22c11c389075d091d3885693fd3f5e9a54ce051b46308bc787e5d4"},
|
||||||
|
{file = "scipy-1.14.0-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:64b2ff514a98cf2bb734a9f90d32dc89dc6ad4a4a36a312cd0d6327170339eb0"},
|
||||||
|
{file = "scipy-1.14.0-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:7d3da42fbbbb860211a811782504f38ae7aaec9de8764a9bef6b262de7a2b50f"},
|
||||||
|
{file = "scipy-1.14.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d91db2c41dd6c20646af280355d41dfa1ec7eead235642178bd57635a3f82209"},
|
||||||
|
{file = "scipy-1.14.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a01cc03bcdc777c9da3cfdcc74b5a75caffb48a6c39c8450a9a05f82c4250a14"},
|
||||||
|
{file = "scipy-1.14.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:65df4da3c12a2bb9ad52b86b4dcf46813e869afb006e58be0f516bc370165159"},
|
||||||
|
{file = "scipy-1.14.0-cp312-cp312-win_amd64.whl", hash = "sha256:4c4161597c75043f7154238ef419c29a64ac4a7c889d588ea77690ac4d0d9b20"},
|
||||||
|
{file = "scipy-1.14.0.tar.gz", hash = "sha256:b5923f48cb840380f9854339176ef21763118a7300a88203ccd0bdd26e58527b"},
|
||||||
|
]
|
||||||
|
|
||||||
|
[package.dependencies]
|
||||||
|
numpy = ">=1.23.5,<2.3"
|
||||||
|
|
||||||
|
[package.extras]
|
||||||
|
dev = ["cython-lint (>=0.12.2)", "doit (>=0.36.0)", "mypy (==1.10.0)", "pycodestyle", "pydevtool", "rich-click", "ruff (>=0.0.292)", "types-psutil", "typing_extensions"]
|
||||||
|
doc = ["jupyterlite-pyodide-kernel", "jupyterlite-sphinx (>=0.13.1)", "jupytext", "matplotlib (>=3.5)", "myst-nb", "numpydoc", "pooch", "pydata-sphinx-theme (>=0.15.2)", "sphinx (>=5.0.0)", "sphinx-design (>=0.4.0)"]
|
||||||
|
test = ["Cython", "array-api-strict", "asv", "gmpy2", "hypothesis (>=6.30)", "meson", "mpmath", "ninja", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "seaborn"
|
||||||
|
version = "0.13.2"
|
||||||
|
description = "Statistical data visualization"
|
||||||
|
optional = false
|
||||||
|
python-versions = ">=3.8"
|
||||||
|
files = [
|
||||||
|
{file = "seaborn-0.13.2-py3-none-any.whl", hash = "sha256:636f8336facf092165e27924f223d3c62ca560b1f2bb5dff7ab7fad265361987"},
|
||||||
|
{file = "seaborn-0.13.2.tar.gz", hash = "sha256:93e60a40988f4d65e9f4885df477e2fdaff6b73a9ded434c1ab356dd57eefff7"},
|
||||||
|
]
|
||||||
|
|
||||||
|
[package.dependencies]
|
||||||
|
matplotlib = ">=3.4,<3.6.1 || >3.6.1"
|
||||||
|
numpy = ">=1.20,<1.24.0 || >1.24.0"
|
||||||
|
pandas = ">=1.2"
|
||||||
|
|
||||||
|
[package.extras]
|
||||||
|
dev = ["flake8", "flit", "mypy", "pandas-stubs", "pre-commit", "pytest", "pytest-cov", "pytest-xdist"]
|
||||||
|
docs = ["ipykernel", "nbconvert", "numpydoc", "pydata_sphinx_theme (==0.10.0rc2)", "pyyaml", "sphinx (<6.0.0)", "sphinx-copybutton", "sphinx-design", "sphinx-issues"]
|
||||||
|
stats = ["scipy (>=1.7)", "statsmodels (>=0.12)"]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "six"
|
||||||
|
version = "1.16.0"
|
||||||
|
description = "Python 2 and 3 compatibility utilities"
|
||||||
|
optional = false
|
||||||
|
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*"
|
||||||
|
files = [
|
||||||
|
{file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"},
|
||||||
|
{file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"},
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "threadpoolctl"
|
||||||
|
version = "3.5.0"
|
||||||
|
description = "threadpoolctl"
|
||||||
|
optional = false
|
||||||
|
python-versions = ">=3.8"
|
||||||
|
files = [
|
||||||
|
{file = "threadpoolctl-3.5.0-py3-none-any.whl", hash = "sha256:56c1e26c150397e58c4926da8eeee87533b1e32bef131bd4bf6a2f45f3185467"},
|
||||||
|
{file = "threadpoolctl-3.5.0.tar.gz", hash = "sha256:082433502dd922bf738de0d8bcc4fdcbf0979ff44c42bd40f5af8a282f6fa107"},
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "tzdata"
|
||||||
|
version = "2024.1"
|
||||||
|
description = "Provider of IANA time zone data"
|
||||||
|
optional = false
|
||||||
|
python-versions = ">=2"
|
||||||
|
files = [
|
||||||
|
{file = "tzdata-2024.1-py2.py3-none-any.whl", hash = "sha256:9068bc196136463f5245e51efda838afa15aaeca9903f49050dfa2679db4d252"},
|
||||||
|
{file = "tzdata-2024.1.tar.gz", hash = "sha256:2674120f8d891909751c38abcdfd386ac0a5a1127954fbc332af6b5ceae07efd"},
|
||||||
|
]
|
||||||
|
|
||||||
|
[metadata]
|
||||||
|
lock-version = "2.0"
|
||||||
|
python-versions = "^3.11"
|
||||||
|
content-hash = "09616985362fba4910821705a0680cd56af41cf7c1d23bd9507f0e09cd55205f"
|
||||||
30
Deep-SAD-PyTorch/pyproject.toml
Normal file
30
Deep-SAD-PyTorch/pyproject.toml
Normal file
@@ -0,0 +1,30 @@
|
|||||||
|
[tool.poetry]
|
||||||
|
name = "deep-sad-pytorch"
|
||||||
|
version = "0.1.0"
|
||||||
|
description = ""
|
||||||
|
authors = ["Your Name <you@example.com>"]
|
||||||
|
readme = "README.md"
|
||||||
|
|
||||||
|
[tool.poetry.dependencies]
|
||||||
|
python = "^3.11"
|
||||||
|
click = "^8.1.7"
|
||||||
|
matplotlib = "^3.9.0"
|
||||||
|
numpy = "^2.0.0"
|
||||||
|
pandas = "^2.2.2"
|
||||||
|
cvxopt = "^1.3.2"
|
||||||
|
cycler = "^0.12.1"
|
||||||
|
joblib = "^1.4.2"
|
||||||
|
kiwisolver = "^1.4.5"
|
||||||
|
pillow = "^10.3.0"
|
||||||
|
pyparsing = "^3.1.2"
|
||||||
|
python-dateutil = "^2.9.0.post0"
|
||||||
|
pytz = "^2024.1"
|
||||||
|
scikit-learn = "^1.5.0"
|
||||||
|
scipy = "^1.14.0"
|
||||||
|
seaborn = "^0.13.2"
|
||||||
|
six = "^1.16.0"
|
||||||
|
|
||||||
|
|
||||||
|
[build-system]
|
||||||
|
requires = ["poetry-core"]
|
||||||
|
build-backend = "poetry.core.masonry.api"
|
||||||
163
Deep-SAD-PyTorch/src/datasets/elpv.py
Normal file
163
Deep-SAD-PyTorch/src/datasets/elpv.py
Normal file
@@ -0,0 +1,163 @@
|
|||||||
|
from torch.utils.data import Subset
|
||||||
|
from PIL import Image
|
||||||
|
from torch.utils.data.dataset import ConcatDataset
|
||||||
|
from torchvision.datasets import VisionDataset
|
||||||
|
from base.torchvision_dataset import TorchvisionDataset
|
||||||
|
from .preprocessing import create_semisupervised_setting
|
||||||
|
from typing import Callable, Optional
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torchvision.transforms as transforms
|
||||||
|
import random
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
import importlib.util
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
|
||||||
|
def load_function_from_path(root_path, subfolder, module_name, function_name):
|
||||||
|
root_path = Path(root_path)
|
||||||
|
module_path = root_path / subfolder / f"{module_name}.py"
|
||||||
|
|
||||||
|
if not module_path.exists():
|
||||||
|
raise FileNotFoundError(f"The module {module_path} does not exist.")
|
||||||
|
|
||||||
|
spec = importlib.util.spec_from_file_location(module_name, str(module_path))
|
||||||
|
module = importlib.util.module_from_spec(spec)
|
||||||
|
sys.modules[module_name] = module
|
||||||
|
spec.loader.exec_module(module)
|
||||||
|
|
||||||
|
if not hasattr(module, function_name):
|
||||||
|
raise AttributeError(
|
||||||
|
f"The function {function_name} does not exist in the module {module_name}."
|
||||||
|
)
|
||||||
|
|
||||||
|
return getattr(module, function_name)
|
||||||
|
|
||||||
|
|
||||||
|
class ELPV_Dataset(TorchvisionDataset):
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
root: str,
|
||||||
|
ratio_known_normal: float = 0.0,
|
||||||
|
ratio_known_outlier: float = 0.0,
|
||||||
|
ratio_pollution: float = 0.0,
|
||||||
|
):
|
||||||
|
super().__init__(root)
|
||||||
|
|
||||||
|
# Define normal and outlier classes
|
||||||
|
self.n_classes = 2 # 0: normal, 1: outlier
|
||||||
|
self.normal_classes = tuple([0])
|
||||||
|
self.outlier_classes = tuple([1])
|
||||||
|
|
||||||
|
# MNIST preprocessing: feature scaling to [0, 1]
|
||||||
|
# FIXME understand mnist feature scaling and check if it or other preprocessing is necessary for elpv
|
||||||
|
transform = transforms.ToTensor()
|
||||||
|
target_transform = transforms.Lambda(lambda x: int(x in self.outlier_classes))
|
||||||
|
|
||||||
|
# Get train set
|
||||||
|
train_set = MyELPV(
|
||||||
|
root=self.root,
|
||||||
|
transform=transform,
|
||||||
|
target_transform=target_transform,
|
||||||
|
train=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Create semi-supervised setting
|
||||||
|
idx, _, semi_targets = create_semisupervised_setting(
|
||||||
|
train_set.targets.cpu().data.numpy(),
|
||||||
|
self.normal_classes,
|
||||||
|
self.outlier_classes,
|
||||||
|
self.outlier_classes,
|
||||||
|
ratio_known_normal,
|
||||||
|
ratio_known_outlier,
|
||||||
|
ratio_pollution,
|
||||||
|
)
|
||||||
|
train_set.semi_targets[idx] = torch.tensor(
|
||||||
|
semi_targets
|
||||||
|
) # set respective semi-supervised labels
|
||||||
|
|
||||||
|
# Subset train_set to semi-supervised setup
|
||||||
|
self.train_set = Subset(train_set, idx)
|
||||||
|
|
||||||
|
# Get test set
|
||||||
|
self.test_set = MyELPV(
|
||||||
|
root=self.root,
|
||||||
|
train=False,
|
||||||
|
transform=transform,
|
||||||
|
target_transform=target_transform,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class MyELPV(VisionDataset):
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
root: str,
|
||||||
|
transforms: Optional[Callable] = None,
|
||||||
|
transform: Optional[Callable] = None,
|
||||||
|
target_transform: Optional[Callable] = None,
|
||||||
|
train=False,
|
||||||
|
split=0.7,
|
||||||
|
seed=0,
|
||||||
|
):
|
||||||
|
super(MyELPV, self).__init__(root, transforms, transform, target_transform)
|
||||||
|
|
||||||
|
load_dataset = load_function_from_path(
|
||||||
|
root, "utils", "elpv_reader", "load_dataset"
|
||||||
|
)
|
||||||
|
|
||||||
|
images, proba, _ = load_dataset()
|
||||||
|
|
||||||
|
np.random.seed(seed)
|
||||||
|
|
||||||
|
shuffled_indices = np.random.permutation(images.shape[0])
|
||||||
|
shuffled_data = images[shuffled_indices]
|
||||||
|
shuffled_proba = proba[shuffled_indices]
|
||||||
|
|
||||||
|
split_idx = int(split * shuffled_data.shape[0])
|
||||||
|
|
||||||
|
if train:
|
||||||
|
self.data = shuffled_data[:split_idx]
|
||||||
|
self.targets = shuffled_proba[:split_idx]
|
||||||
|
|
||||||
|
else:
|
||||||
|
self.data = shuffled_data[split_idx:]
|
||||||
|
self.targets = shuffled_proba[split_idx:]
|
||||||
|
|
||||||
|
self.data = torch.tensor(self.data)
|
||||||
|
self.targets[self.targets > 0] = 1
|
||||||
|
self.targets = torch.tensor(self.targets, dtype=torch.int64)
|
||||||
|
|
||||||
|
self.semi_targets = torch.zeros_like(self.targets)
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.data)
|
||||||
|
|
||||||
|
def __getitem__(self, index):
|
||||||
|
"""Override the original method of the MNIST class.
|
||||||
|
Args:
|
||||||
|
index (int): Index
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
tuple: (image, target, semi_target, index)
|
||||||
|
"""
|
||||||
|
img, target, semi_target = (
|
||||||
|
self.data[index],
|
||||||
|
int(self.targets[index]),
|
||||||
|
int(self.semi_targets[index]),
|
||||||
|
)
|
||||||
|
|
||||||
|
# doing this so that it is consistent with all other datasets
|
||||||
|
# to return a PIL Image
|
||||||
|
img = Image.fromarray(img.numpy(), mode="L")
|
||||||
|
|
||||||
|
if self.transform is not None:
|
||||||
|
img = self.transform(img)
|
||||||
|
|
||||||
|
if self.target_transform is not None:
|
||||||
|
target = self.target_transform(target)
|
||||||
|
|
||||||
|
return img, target, semi_target, index
|
||||||
@@ -1,4 +1,6 @@
|
|||||||
from .mnist import MNIST_Dataset
|
from .mnist import MNIST_Dataset
|
||||||
|
from .elpv import ELPV_Dataset
|
||||||
|
from .subter import SubTer_Dataset
|
||||||
from .fmnist import FashionMNIST_Dataset
|
from .fmnist import FashionMNIST_Dataset
|
||||||
from .cifar10 import CIFAR10_Dataset
|
from .cifar10 import CIFAR10_Dataset
|
||||||
from .odds import ODDSADDataset
|
from .odds import ODDSADDataset
|
||||||
@@ -19,6 +21,8 @@ def load_dataset(
|
|||||||
|
|
||||||
implemented_datasets = (
|
implemented_datasets = (
|
||||||
"mnist",
|
"mnist",
|
||||||
|
"elpv",
|
||||||
|
"subter",
|
||||||
"fmnist",
|
"fmnist",
|
||||||
"cifar10",
|
"cifar10",
|
||||||
"arrhythmia",
|
"arrhythmia",
|
||||||
@@ -32,6 +36,22 @@ def load_dataset(
|
|||||||
|
|
||||||
dataset = None
|
dataset = None
|
||||||
|
|
||||||
|
if dataset_name == "subter":
|
||||||
|
dataset = SubTer_Dataset(
|
||||||
|
root=data_path,
|
||||||
|
ratio_known_normal=ratio_known_normal,
|
||||||
|
ratio_known_outlier=ratio_known_outlier,
|
||||||
|
ratio_pollution=ratio_pollution,
|
||||||
|
)
|
||||||
|
|
||||||
|
if dataset_name == "elpv":
|
||||||
|
dataset = ELPV_Dataset(
|
||||||
|
root=data_path,
|
||||||
|
ratio_known_normal=ratio_known_normal,
|
||||||
|
ratio_known_outlier=ratio_known_outlier,
|
||||||
|
ratio_pollution=ratio_pollution,
|
||||||
|
)
|
||||||
|
|
||||||
if dataset_name == "mnist":
|
if dataset_name == "mnist":
|
||||||
dataset = MNIST_Dataset(
|
dataset = MNIST_Dataset(
|
||||||
root=data_path,
|
root=data_path,
|
||||||
|
|||||||
155
Deep-SAD-PyTorch/src/datasets/subter.py
Normal file
155
Deep-SAD-PyTorch/src/datasets/subter.py
Normal file
@@ -0,0 +1,155 @@
|
|||||||
|
from torch.utils.data import Subset
|
||||||
|
from PIL import Image
|
||||||
|
from torch.utils.data.dataset import ConcatDataset
|
||||||
|
from torchvision.datasets import VisionDataset
|
||||||
|
from base.torchvision_dataset import TorchvisionDataset
|
||||||
|
from .preprocessing import create_semisupervised_setting
|
||||||
|
from typing import Callable, Optional
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torchvision.transforms as transforms
|
||||||
|
import random
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
|
||||||
|
class SubTer_Dataset(TorchvisionDataset):
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
root: str,
|
||||||
|
ratio_known_normal: float = 0.0,
|
||||||
|
ratio_known_outlier: float = 0.0,
|
||||||
|
ratio_pollution: float = 0.0,
|
||||||
|
):
|
||||||
|
super().__init__(root)
|
||||||
|
|
||||||
|
# Define normal and outlier classes
|
||||||
|
self.n_classes = 2 # 0: normal, 1: outlier
|
||||||
|
self.normal_classes = tuple([0])
|
||||||
|
self.outlier_classes = tuple([1])
|
||||||
|
|
||||||
|
# MNIST preprocessing: feature scaling to [0, 1]
|
||||||
|
# FIXME understand mnist feature scaling and check if it or other preprocessing is necessary for elpv
|
||||||
|
transform = transforms.ToTensor()
|
||||||
|
target_transform = transforms.Lambda(lambda x: int(x in self.outlier_classes))
|
||||||
|
|
||||||
|
# Get train set
|
||||||
|
train_set = MySubTer(
|
||||||
|
root=self.root,
|
||||||
|
transform=transform,
|
||||||
|
target_transform=target_transform,
|
||||||
|
train=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Create semi-supervised setting
|
||||||
|
idx, _, semi_targets = create_semisupervised_setting(
|
||||||
|
train_set.targets.cpu().data.numpy(),
|
||||||
|
self.normal_classes,
|
||||||
|
self.outlier_classes,
|
||||||
|
self.outlier_classes,
|
||||||
|
ratio_known_normal,
|
||||||
|
ratio_known_outlier,
|
||||||
|
ratio_pollution,
|
||||||
|
)
|
||||||
|
train_set.semi_targets[idx] = torch.tensor(
|
||||||
|
np.array(semi_targets, dtype=np.int8)
|
||||||
|
) # set respective semi-supervised labels
|
||||||
|
|
||||||
|
# Subset train_set to semi-supervised setup
|
||||||
|
self.train_set = Subset(train_set, idx)
|
||||||
|
|
||||||
|
# Get test set
|
||||||
|
self.test_set = MySubTer(
|
||||||
|
root=self.root,
|
||||||
|
train=False,
|
||||||
|
transform=transform,
|
||||||
|
target_transform=target_transform,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class MySubTer(VisionDataset):
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
root: str,
|
||||||
|
transforms: Optional[Callable] = None,
|
||||||
|
transform: Optional[Callable] = None,
|
||||||
|
target_transform: Optional[Callable] = None,
|
||||||
|
train=False,
|
||||||
|
split=0.7,
|
||||||
|
seed=0,
|
||||||
|
):
|
||||||
|
super(MySubTer, self).__init__(root, transforms, transform, target_transform)
|
||||||
|
|
||||||
|
experiments_data = []
|
||||||
|
experiments_targets = []
|
||||||
|
|
||||||
|
for experiment_file in Path(root).iterdir():
|
||||||
|
if experiment_file.suffix != ".npy":
|
||||||
|
continue
|
||||||
|
experiment_data = np.load(experiment_file)
|
||||||
|
# experiment_data = np.lib.format.open_memmap(experiment_file, mode='r+')
|
||||||
|
experiment_targets = (
|
||||||
|
np.ones(experiment_data.shape[0], dtype=np.int8)
|
||||||
|
if "smoke" in experiment_file.name
|
||||||
|
else np.zeros(experiment_data.shape[0], dtype=np.int8)
|
||||||
|
)
|
||||||
|
experiments_data.append(experiment_data)
|
||||||
|
experiments_targets.append(experiment_targets)
|
||||||
|
|
||||||
|
lidar_projections = np.concatenate(experiments_data)
|
||||||
|
smoke_presence = np.concatenate(experiments_targets)
|
||||||
|
|
||||||
|
np.random.seed(seed)
|
||||||
|
|
||||||
|
shuffled_indices = np.random.permutation(lidar_projections.shape[0])
|
||||||
|
shuffled_lidar_projections = lidar_projections[shuffled_indices]
|
||||||
|
shuffled_smoke_presence = smoke_presence[shuffled_indices]
|
||||||
|
|
||||||
|
split_idx = int(split * shuffled_lidar_projections.shape[0])
|
||||||
|
|
||||||
|
if train:
|
||||||
|
self.data = shuffled_lidar_projections[:split_idx]
|
||||||
|
self.targets = shuffled_smoke_presence[:split_idx]
|
||||||
|
|
||||||
|
else:
|
||||||
|
self.data = shuffled_lidar_projections[split_idx:]
|
||||||
|
self.targets = shuffled_smoke_presence[split_idx:]
|
||||||
|
|
||||||
|
self.data = np.nan_to_num(self.data)
|
||||||
|
|
||||||
|
self.data = torch.tensor(self.data)
|
||||||
|
self.targets = torch.tensor(self.targets, dtype=torch.int8)
|
||||||
|
|
||||||
|
self.semi_targets = torch.zeros_like(self.targets, dtype=torch.int8)
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.data)
|
||||||
|
|
||||||
|
def __getitem__(self, index):
|
||||||
|
"""Override the original method of the MNIST class.
|
||||||
|
Args:
|
||||||
|
index (int): Index
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
tuple: (image, target, semi_target, index)
|
||||||
|
"""
|
||||||
|
img, target, semi_target = (
|
||||||
|
self.data[index],
|
||||||
|
int(self.targets[index]),
|
||||||
|
int(self.semi_targets[index]),
|
||||||
|
)
|
||||||
|
|
||||||
|
# doing this so that it is consistent with all other datasets
|
||||||
|
# to return a PIL Image
|
||||||
|
img = Image.fromarray(img.numpy(), mode="F")
|
||||||
|
|
||||||
|
if self.transform is not None:
|
||||||
|
img = self.transform(img)
|
||||||
|
|
||||||
|
if self.target_transform is not None:
|
||||||
|
target = self.target_transform(target)
|
||||||
|
|
||||||
|
return img, target, semi_target, index
|
||||||
@@ -19,6 +19,8 @@ from datasets.main import load_dataset
|
|||||||
type=click.Choice(
|
type=click.Choice(
|
||||||
[
|
[
|
||||||
"mnist",
|
"mnist",
|
||||||
|
"elpv",
|
||||||
|
"subter",
|
||||||
"fmnist",
|
"fmnist",
|
||||||
"cifar10",
|
"cifar10",
|
||||||
"arrhythmia",
|
"arrhythmia",
|
||||||
@@ -35,6 +37,8 @@ from datasets.main import load_dataset
|
|||||||
type=click.Choice(
|
type=click.Choice(
|
||||||
[
|
[
|
||||||
"mnist_LeNet",
|
"mnist_LeNet",
|
||||||
|
"elpv_LeNet",
|
||||||
|
"subter_LeNet",
|
||||||
"fmnist_LeNet",
|
"fmnist_LeNet",
|
||||||
"cifar10_LeNet",
|
"cifar10_LeNet",
|
||||||
"arrhythmia_mlp",
|
"arrhythmia_mlp",
|
||||||
@@ -109,7 +113,7 @@ from datasets.main import load_dataset
|
|||||||
@click.option(
|
@click.option(
|
||||||
"--lr_milestone",
|
"--lr_milestone",
|
||||||
type=int,
|
type=int,
|
||||||
default=0,
|
default=[0],
|
||||||
multiple=True,
|
multiple=True,
|
||||||
help="Lr scheduler milestones at which lr is multiplied by 0.1. Can be multiple and must be increasing.",
|
help="Lr scheduler milestones at which lr is multiplied by 0.1. Can be multiple and must be increasing.",
|
||||||
)
|
)
|
||||||
@@ -149,7 +153,7 @@ from datasets.main import load_dataset
|
|||||||
@click.option(
|
@click.option(
|
||||||
"--ae_lr_milestone",
|
"--ae_lr_milestone",
|
||||||
type=int,
|
type=int,
|
||||||
default=0,
|
default=[0],
|
||||||
multiple=True,
|
multiple=True,
|
||||||
help="Lr scheduler milestones at which lr is multiplied by 0.1. Can be multiple and must be increasing.",
|
help="Lr scheduler milestones at which lr is multiplied by 0.1. Can be multiple and must be increasing.",
|
||||||
)
|
)
|
||||||
@@ -393,9 +397,9 @@ def main(
|
|||||||
np.argsort(scores[labels == 0])
|
np.argsort(scores[labels == 0])
|
||||||
] # from lowest to highest score
|
] # from lowest to highest score
|
||||||
|
|
||||||
if dataset_name in ("mnist", "fmnist", "cifar10"):
|
if dataset_name in ("mnist", "fmnist", "cifar10", "elpv"):
|
||||||
|
|
||||||
if dataset_name in ("mnist", "fmnist"):
|
if dataset_name in ("mnist", "fmnist", "elpv"):
|
||||||
X_all_low = dataset.test_set.data[idx_all_sorted[:32], ...].unsqueeze(1)
|
X_all_low = dataset.test_set.data[idx_all_sorted[:32], ...].unsqueeze(1)
|
||||||
X_all_high = dataset.test_set.data[idx_all_sorted[-32:], ...].unsqueeze(1)
|
X_all_high = dataset.test_set.data[idx_all_sorted[-32:], ...].unsqueeze(1)
|
||||||
X_normal_low = dataset.test_set.data[idx_normal_sorted[:32], ...].unsqueeze(
|
X_normal_low = dataset.test_set.data[idx_normal_sorted[:32], ...].unsqueeze(
|
||||||
|
|||||||
74
Deep-SAD-PyTorch/src/networks/elpv_LeNet.py
Normal file
74
Deep-SAD-PyTorch/src/networks/elpv_LeNet.py
Normal file
@@ -0,0 +1,74 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
from base.base_net import BaseNet
|
||||||
|
|
||||||
|
|
||||||
|
class ELPV_LeNet(BaseNet):
|
||||||
|
|
||||||
|
def __init__(self, rep_dim=256):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.rep_dim = rep_dim
|
||||||
|
self.pool = nn.MaxPool2d(2, 2)
|
||||||
|
|
||||||
|
self.conv1 = nn.Conv2d(1, 8, 5, bias=False, padding=2)
|
||||||
|
self.bn1 = nn.BatchNorm2d(8, eps=1e-04, affine=False)
|
||||||
|
self.conv2 = nn.Conv2d(8, 4, 5, bias=False, padding=2)
|
||||||
|
self.bn2 = nn.BatchNorm2d(4, eps=1e-04, affine=False)
|
||||||
|
self.fc1 = nn.Linear(4 * 75 * 75, self.rep_dim, bias=False)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = x.view(-1, 1, 300, 300)
|
||||||
|
x = self.conv1(x)
|
||||||
|
x = self.pool(F.leaky_relu(self.bn1(x)))
|
||||||
|
x = self.conv2(x)
|
||||||
|
x = self.pool(F.leaky_relu(self.bn2(x)))
|
||||||
|
x = x.view(int(x.size(0)), -1)
|
||||||
|
x = self.fc1(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class ELPV_LeNet_Decoder(BaseNet):
|
||||||
|
|
||||||
|
def __init__(self, rep_dim=256):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.rep_dim = rep_dim
|
||||||
|
|
||||||
|
# Decoder network
|
||||||
|
self.fc3 = nn.Linear(self.rep_dim, 2888, bias=False)
|
||||||
|
self.bn1d2 = nn.BatchNorm1d(2888, eps=1e-04, affine=False)
|
||||||
|
self.deconv1 = nn.ConvTranspose2d(2, 4, 5, bias=False, padding=2)
|
||||||
|
self.bn3 = nn.BatchNorm2d(4, eps=1e-04, affine=False)
|
||||||
|
self.deconv2 = nn.ConvTranspose2d(4, 8, 5, bias=False, padding=3)
|
||||||
|
self.bn4 = nn.BatchNorm2d(8, eps=1e-04, affine=False)
|
||||||
|
self.deconv3 = nn.ConvTranspose2d(8, 1, 5, bias=False, padding=2)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.bn1d2(self.fc3(x))
|
||||||
|
x = x.view(int(x.size(0)), 2, 38, 38)
|
||||||
|
x = F.interpolate(F.leaky_relu(x), scale_factor=2)
|
||||||
|
x = self.deconv1(x)
|
||||||
|
x = F.interpolate(F.leaky_relu(self.bn3(x)), scale_factor=2)
|
||||||
|
x = self.deconv2(x)
|
||||||
|
x = F.interpolate(F.leaky_relu(self.bn4(x)), scale_factor=2)
|
||||||
|
x = self.deconv3(x)
|
||||||
|
x = torch.sigmoid(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class ELPV_LeNet_Autoencoder(BaseNet):
|
||||||
|
|
||||||
|
def __init__(self, rep_dim=256):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.rep_dim = rep_dim
|
||||||
|
self.encoder = ELPV_LeNet(rep_dim=rep_dim)
|
||||||
|
self.decoder = ELPV_LeNet_Decoder(rep_dim=rep_dim)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.encoder(x)
|
||||||
|
x = self.decoder(x)
|
||||||
|
return x
|
||||||
@@ -1,4 +1,6 @@
|
|||||||
from .mnist_LeNet import MNIST_LeNet, MNIST_LeNet_Autoencoder
|
from .mnist_LeNet import MNIST_LeNet, MNIST_LeNet_Autoencoder
|
||||||
|
from .elpv_LeNet import ELPV_LeNet, ELPV_LeNet_Autoencoder
|
||||||
|
from .subter_LeNet import SubTer_LeNet, SubTer_LeNet_Autoencoder
|
||||||
from .fmnist_LeNet import FashionMNIST_LeNet, FashionMNIST_LeNet_Autoencoder
|
from .fmnist_LeNet import FashionMNIST_LeNet, FashionMNIST_LeNet_Autoencoder
|
||||||
from .cifar10_LeNet import CIFAR10_LeNet, CIFAR10_LeNet_Autoencoder
|
from .cifar10_LeNet import CIFAR10_LeNet, CIFAR10_LeNet_Autoencoder
|
||||||
from .mlp import MLP, MLP_Autoencoder
|
from .mlp import MLP, MLP_Autoencoder
|
||||||
@@ -11,6 +13,8 @@ def build_network(net_name, ae_net=None):
|
|||||||
|
|
||||||
implemented_networks = (
|
implemented_networks = (
|
||||||
"mnist_LeNet",
|
"mnist_LeNet",
|
||||||
|
"elpv_LeNet",
|
||||||
|
"subter_LeNet",
|
||||||
"mnist_DGM_M2",
|
"mnist_DGM_M2",
|
||||||
"mnist_DGM_M1M2",
|
"mnist_DGM_M1M2",
|
||||||
"fmnist_LeNet",
|
"fmnist_LeNet",
|
||||||
@@ -39,6 +43,12 @@ def build_network(net_name, ae_net=None):
|
|||||||
if net_name == "mnist_LeNet":
|
if net_name == "mnist_LeNet":
|
||||||
net = MNIST_LeNet()
|
net = MNIST_LeNet()
|
||||||
|
|
||||||
|
if net_name == "subter_LeNet":
|
||||||
|
net = SubTer_LeNet()
|
||||||
|
|
||||||
|
if net_name == "elpv_LeNet":
|
||||||
|
net = ELPV_LeNet()
|
||||||
|
|
||||||
if net_name == "mnist_DGM_M2":
|
if net_name == "mnist_DGM_M2":
|
||||||
net = DeepGenerativeModel(
|
net = DeepGenerativeModel(
|
||||||
[1 * 28 * 28, 2, 32, [128, 64]], classifier_net=MNIST_LeNet
|
[1 * 28 * 28, 2, 32, [128, 64]], classifier_net=MNIST_LeNet
|
||||||
@@ -118,6 +128,8 @@ def build_autoencoder(net_name):
|
|||||||
"""Builds the corresponding autoencoder network."""
|
"""Builds the corresponding autoencoder network."""
|
||||||
|
|
||||||
implemented_networks = (
|
implemented_networks = (
|
||||||
|
"elpv_LeNet",
|
||||||
|
"subter_LeNet",
|
||||||
"mnist_LeNet",
|
"mnist_LeNet",
|
||||||
"mnist_DGM_M1M2",
|
"mnist_DGM_M1M2",
|
||||||
"fmnist_LeNet",
|
"fmnist_LeNet",
|
||||||
@@ -139,6 +151,12 @@ def build_autoencoder(net_name):
|
|||||||
if net_name == "mnist_LeNet":
|
if net_name == "mnist_LeNet":
|
||||||
ae_net = MNIST_LeNet_Autoencoder()
|
ae_net = MNIST_LeNet_Autoencoder()
|
||||||
|
|
||||||
|
if net_name == "subter_LeNet":
|
||||||
|
ae_net = SubTer_LeNet_Autoencoder()
|
||||||
|
|
||||||
|
if net_name == "elpv_LeNet":
|
||||||
|
ae_net = ELPV_LeNet_Autoencoder()
|
||||||
|
|
||||||
if net_name == "mnist_DGM_M1M2":
|
if net_name == "mnist_DGM_M1M2":
|
||||||
ae_net = VariationalAutoencoder([1 * 28 * 28, 32, [128, 64]])
|
ae_net = VariationalAutoencoder([1 * 28 * 28, 32, [128, 64]])
|
||||||
|
|
||||||
|
|||||||
70
Deep-SAD-PyTorch/src/networks/subter_LeNet.py
Normal file
70
Deep-SAD-PyTorch/src/networks/subter_LeNet.py
Normal file
@@ -0,0 +1,70 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
from base.base_net import BaseNet
|
||||||
|
|
||||||
|
|
||||||
|
class SubTer_LeNet(BaseNet):
|
||||||
|
|
||||||
|
def __init__(self, rep_dim=1024):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.rep_dim = rep_dim
|
||||||
|
self.pool = nn.MaxPool2d(2, 2)
|
||||||
|
|
||||||
|
self.conv1 = nn.Conv2d(1, 8, 5, bias=False, padding=2)
|
||||||
|
self.bn1 = nn.BatchNorm2d(8, eps=1e-04, affine=False)
|
||||||
|
self.conv2 = nn.Conv2d(8, 4, 5, bias=False, padding=2)
|
||||||
|
self.bn2 = nn.BatchNorm2d(4, eps=1e-04, affine=False)
|
||||||
|
self.fc1 = nn.Linear(4 * 512 * 8, self.rep_dim, bias=False)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = x.view(-1, 1, 32, 2048)
|
||||||
|
x = self.conv1(x)
|
||||||
|
x = self.pool(F.leaky_relu(self.bn1(x)))
|
||||||
|
x = self.conv2(x)
|
||||||
|
x = self.pool(F.leaky_relu(self.bn2(x)))
|
||||||
|
x = x.view(int(x.size(0)), -1)
|
||||||
|
x = self.fc1(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class SubTer_LeNet_Decoder(BaseNet):
|
||||||
|
|
||||||
|
def __init__(self, rep_dim=1024):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.rep_dim = rep_dim
|
||||||
|
|
||||||
|
# Decoder network
|
||||||
|
self.fc3 = nn.Linear(self.rep_dim, 4 * 512 * 8, bias=False)
|
||||||
|
self.bn3 = nn.BatchNorm2d(4, eps=1e-04, affine=False)
|
||||||
|
self.deconv1 = nn.ConvTranspose2d(4, 8, 5, bias=False, padding=2)
|
||||||
|
self.bn4 = nn.BatchNorm2d(8, eps=1e-04, affine=False)
|
||||||
|
self.deconv2 = nn.ConvTranspose2d(8, 1, 5, bias=False, padding=2)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.fc3(x)
|
||||||
|
x = x.view(int(x.size(0)), 4, 8, 512)
|
||||||
|
x = F.interpolate(F.leaky_relu(self.bn3(x)), scale_factor=2)
|
||||||
|
x = self.deconv1(x)
|
||||||
|
x = F.interpolate(F.leaky_relu(self.bn4(x)), scale_factor=2)
|
||||||
|
x = self.deconv2(x)
|
||||||
|
x = torch.sigmoid(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class SubTer_LeNet_Autoencoder(BaseNet):
|
||||||
|
|
||||||
|
def __init__(self, rep_dim=1024):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.rep_dim = rep_dim
|
||||||
|
self.encoder = SubTer_LeNet(rep_dim=rep_dim)
|
||||||
|
self.decoder = SubTer_LeNet_Decoder(rep_dim=rep_dim)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.encoder(x)
|
||||||
|
x = self.decoder(x)
|
||||||
|
return x
|
||||||
35
Deep-SAD-PyTorch/src/onnx_export.py
Normal file
35
Deep-SAD-PyTorch/src/onnx_export.py
Normal file
@@ -0,0 +1,35 @@
|
|||||||
|
import torch
|
||||||
|
import torch.onnx
|
||||||
|
from networks.mnist_LeNet import MNIST_LeNet_Autoencoder
|
||||||
|
|
||||||
|
|
||||||
|
def export_model_to_onnx(model, filepath, input_shape=(1, 1, 28, 28)):
|
||||||
|
model.eval() # Set the model to evaluation mode
|
||||||
|
dummy_input = torch.randn(input_shape) # Create a dummy input tensor
|
||||||
|
torch.onnx.export(
|
||||||
|
model, # model being run
|
||||||
|
dummy_input, # model input (or a tuple for multiple inputs)
|
||||||
|
filepath, # where to save the model (can be a file or file-like object)
|
||||||
|
export_params=True, # store the trained parameter weights inside the model file
|
||||||
|
opset_version=11, # the ONNX version to export the model to
|
||||||
|
do_constant_folding=True, # whether to execute constant folding for optimization
|
||||||
|
input_names=["input"], # the model's input names
|
||||||
|
output_names=["output"], # the model's output names
|
||||||
|
dynamic_axes={
|
||||||
|
"input": {0: "batch_size"}, # variable length axes
|
||||||
|
"output": {0: "batch_size"},
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# Initialize the autoencoder model
|
||||||
|
autoencoder = MNIST_LeNet_Autoencoder(rep_dim=32)
|
||||||
|
|
||||||
|
# Define the file path where the ONNX model will be saved
|
||||||
|
onnx_file_path = "mnist_lenet_autoencoder.onnx"
|
||||||
|
|
||||||
|
# Export the model
|
||||||
|
export_model_to_onnx(autoencoder, onnx_file_path)
|
||||||
|
|
||||||
|
print(f"Model has been exported to {onnx_file_path}")
|
||||||
Reference in New Issue
Block a user