improved projection script + demo angular projection instead of original

id
This commit is contained in:
Jan Kowalczyk
2024-06-28 09:46:38 +02:00
parent de5f74df1f
commit ddcae64b79

View File

@@ -9,6 +9,8 @@ from pointcloudset import Dataset
from rich.progress import track
from pandas import DataFrame
from PIL import Image
from math import pi
from typing import Optional
import matplotlib
import numpy as np
@@ -27,22 +29,6 @@ from util import (
)
def fill_sparse_data(data: DataFrame, horizontal_resolution: int) -> DataFrame:
complete_original_ids = DataFrame(
{
"original_id": np.arange(
0,
(data["ring"].max() + 1) * horizontal_resolution,
dtype=np.uint32,
)
}
)
data = complete_original_ids.merge(data, on="original_id", how="left")
data["ring"] = data["original_id"] // horizontal_resolution
data["horizontal_position"] = data["original_id"] % horizontal_resolution
return data
def crop_lidar_data_to_roi(
data: DataFrame,
roi_angle_start: float,
@@ -65,32 +51,6 @@ def crop_lidar_data_to_roi(
return cropped_data, roi_index_width
def create_projection_data(
dataset: Dataset,
horizontal_resolution: int,
roi_angle_start: float,
roi_angle_width: float,
) -> list[Path]:
converted_lidar_frames = []
for i, pc in track(
enumerate(dataset, 1), description="Rendering images...", total=len(dataset)
):
lidar_data = fill_sparse_data(pc.data, horizontal_resolution)
lidar_data["normalized_range"] = 1 / np.sqrt(
lidar_data["x"] ** 2 + lidar_data["y"] ** 2 + lidar_data["z"] ** 2
)
lidar_data = lidar_data.pivot(
index="ring", columns="horizontal_position", values="normalized_range"
)
lidar_data, _ = crop_lidar_data_to_roi(
lidar_data, roi_angle_start, roi_angle_width, horizontal_resolution
)
converted_lidar_frames.append(lidar_data.to_numpy())
return np.stack(converted_lidar_frames, axis=0)
def create_2d_projection(
df: DataFrame,
output_file_path: Path,
@@ -123,7 +83,7 @@ def create_2d_projection(
tmp_file_path.unlink()
def render_2d_images(
def create_projection_data(
dataset: Dataset,
output_path: Path,
colormap_name: str,
@@ -134,37 +94,91 @@ def render_2d_images(
horizontal_scale: int,
roi_angle_start: float,
roi_angle_width: float,
) -> list[Path]:
render_images: bool,
) -> (np.ndarray, Optional[list[Path]]):
rendered_images = []
converted_lidar_frames = []
for i, pc in track(
enumerate(dataset, 1), description="Rendering images...", total=len(dataset)
enumerate(dataset, 1), description="Creating projections...", total=len(dataset)
):
image_data = fill_sparse_data(pc.data, horizontal_resolution).pivot(
index="ring", columns="horizontal_position", values="range"
vertical_resolution = int(pc.data["ring"].max() + 1)
# Angle calculation implementation
# projected_data = pc.data.copy()
# projected_data["arctan"] = np.arctan2(projected_data["y"], projected_data["x"])
# projected_data["arctan_normalized"] = 0.5 * (projected_data["arctan"] / pi + 1.0)
# projected_data["arctan_scaled"] = projected_data["arctan_normalized"] * horizontal_resolution
# #projected_data["horizontal_position"] = np.floor(projected_data["arctan_scaled"])
# projected_data["horizontal_position"] = np.round(projected_data["arctan_scaled"])
# projected_data["normalized_range"] = 1 / np.sqrt(
# projected_data["x"] ** 2 + projected_data["y"] ** 2 + projected_data["z"] ** 2
# )
# duplicates = projected_data[projected_data.duplicated(subset=['ring', 'horizontal_position'], keep=False)].sort_values(by=['ring', 'horizontal_position'])
# sorted = projected_data.sort_values(by=['ring', 'horizontal_position'])
# FIXME: following pivot fails due to duplicates in the data, some points (x, y) are mapped to the same pixel in the projection, have to decide how to handles
# these cases
# projected_image_data = projected_data.pivot(
# index="ring", columns="horizontal_position", values="normalized_range"
# )
# projected_image_data = projected_image_data.reindex(columns=range(horizontal_resolution), fill_value=0)
# projected_image_data, output_horizontal_resolution = crop_lidar_data_to_roi(
# projected_image_data, roi_angle_start, roi_angle_width, horizontal_resolution
# )
# create_2d_projection(
# projected_image_data,
# output_path / f"frame_{i:04d}_projection.png",
# output_path / "tmp.png",
# colormap_name,
# missing_data_color,
# reverse_colormap,
# horizontal_resolution=output_horizontal_resolution * horizontal_scale,
# vertical_resolution=vertical_resolution * vertical_scale,
# )
lidar_data = pc.data.copy()
lidar_data["horizontal_position"] = (
lidar_data["original_id"] % horizontal_resolution
)
lidar_data["normalized_range"] = 1 / np.sqrt(
lidar_data["x"] ** 2 + lidar_data["y"] ** 2 + lidar_data["z"] ** 2
)
lidar_data = lidar_data.pivot(
index="ring", columns="horizontal_position", values="normalized_range"
)
lidar_data = lidar_data.reindex(
columns=range(horizontal_resolution), fill_value=0
)
lidar_data, output_horizontal_resolution = crop_lidar_data_to_roi(
lidar_data, roi_angle_start, roi_angle_width, horizontal_resolution
)
image_data, output_horizontal_resolution = crop_lidar_data_to_roi(
image_data, roi_angle_start, roi_angle_width, horizontal_resolution
)
converted_lidar_frames.append(lidar_data.to_numpy())
if render_images:
image_path = create_2d_projection(
lidar_data,
output_path / f"frame_{i:04d}.png",
output_path / "tmp.png",
colormap_name,
missing_data_color,
reverse_colormap,
horizontal_resolution=output_horizontal_resolution * horizontal_scale,
vertical_resolution=vertical_resolution * vertical_scale,
)
normalized_data = (image_data - image_data.min().min()) / (
image_data.max().max() - image_data.min().min()
)
image_path = create_2d_projection(
normalized_data,
output_path / f"frame_{i:04d}.png",
output_path / "tmp.png",
colormap_name,
missing_data_color,
reverse_colormap,
horizontal_resolution=output_horizontal_resolution * horizontal_scale,
vertical_resolution=(pc.data["ring"].max() + 1) * vertical_scale,
)
rendered_images.append(image_path)
rendered_images.append(image_path)
projection_data = np.stack(converted_lidar_frames, axis=0)
return rendered_images
if render_images:
return rendered_images, projection_data
else:
return projection_data
def main() -> int:
@@ -196,28 +210,24 @@ def main() -> int:
help="path rendered frames should be written to",
)
parser.add_argument(
"--output-images",
type=bool,
default=True,
help="if rendered frames should be outputted as images",
"--output-no-images",
action="store_true",
help="do not create individual image files for the projection frames",
)
parser.add_argument(
"--output-video",
type=bool,
default=True,
help="if rendered frames should be outputted as a video",
"--output-no-video",
action="store_true",
help="do not create a video file from the projection frames",
)
parser.add_argument(
"--output-pickle",
default=True,
type=bool,
help="if the processed data should be saved as a pickle file",
"--output-no-numpy",
action="store_true",
help="do not create a numpy file with the projection data",
)
parser.add_argument(
"--skip-existing",
default=True,
type=bool,
help="if true will skip rendering existing files",
"--force-generation",
action="store_true",
help="if used will force the generation even if output already exists",
)
parser.add_argument(
"--colormap-name",
@@ -273,46 +283,88 @@ def main() -> int:
output_path = args.output_path / args.input_experiment_path.stem
output_path.mkdir(parents=True, exist_ok=True)
parser.write_config_file(
parser.parse_known_args()[0],
output_file_paths=[(output_path / "config.yaml").as_posix()],
)
# Create temporary folder for images, if outputting images we use the output folder itself as temp folder
tmp_path = output_path / "frames" if args.output_images else output_path / "tmp"
tmp_path = output_path / "tmp" if args.output_no_images else output_path / "frames"
tmp_path.mkdir(parents=True, exist_ok=True)
dataset = load_dataset(args.input_experiment_path, args.pointcloud_topic)
images = render_2d_images(
dataset,
tmp_path,
args.colormap_name,
args.missing_data_color,
args.reverse_colormap,
args.horizontal_resolution,
args.vertical_scale,
args.horizontal_scale,
args.roi_angle_start,
args.roi_angle_width,
images = []
if not args.output_no_images or not args.output_no_video:
if not args.force_generation and all(
(tmp_path / f"frame_{i:04d}.png").exists()
for i in range(1, len(dataset) + 1)
):
print(
f"Skipping image generation for {args.input_experiment_path} as all frames already exist"
)
else:
projection_data, images = create_projection_data(
dataset,
tmp_path,
args.colormap_name,
args.missing_data_color,
args.reverse_colormap,
args.horizontal_resolution,
args.vertical_scale,
args.horizontal_scale,
args.roi_angle_start,
args.roi_angle_width,
render_images=True,
)
output_numpy_path = (output_path / args.input_experiment_path.stem).with_suffix(
".npy"
)
if not args.output_no_numpy:
if not args.force_generation and output_numpy_path.exists():
print(
f"Skipping numpy file generation for {args.input_experiment_path} as {output_numpy_path} already exists"
)
else:
if args.output_no_images:
projection_data, _ = create_projection_data(
dataset,
tmp_path,
args.colormap_name,
args.missing_data_color,
args.reverse_colormap,
args.horizontal_resolution,
args.vertical_scale,
args.horizontal_scale,
args.roi_angle_start,
args.roi_angle_width,
render_images=False,
)
if args.output_pickle:
output_pickle_path = (
output_path / args.input_experiment_path.stem
).with_suffix(".pkl")
processed_range_data = create_projection_data(
dataset,
args.horizontal_resolution,
args.roi_angle_start,
args.roi_angle_width,
)
processed_range_data.dump(output_pickle_path)
# processed_range_data.dump(output_numpy_path)
np.save(output_numpy_path, projection_data, fix_imports=False)
if args.output_video:
input_images_pattern = f"{tmp_path}/frame_%04d.png"
create_video_from_images(
input_images_pattern,
(output_path / args.input_experiment_path.stem).with_suffix(".mp4"),
calculate_average_frame_rate(dataset),
)
if not args.output_no_video:
if (
not args.force_generation
and (output_path / args.input_experiment_path.stem)
.with_suffix(".mp4")
.exists()
):
print(
f"Skipping video generation for {args.input_experiment_path} as {output_path / args.input_experiment_path.stem}.mp4 already exists"
)
else:
input_images_pattern = f"{tmp_path}/frame_%04d.png"
create_video_from_images(
input_images_pattern,
(output_path / args.input_experiment_path.stem).with_suffix(".mp4"),
calculate_average_frame_rate(dataset),
)
if not args.output_images:
if args.output_no_images:
for image in images:
image.unlink()
tmp_path.rmdir()