split subter implementation (training + inference)
This commit is contained in:
@@ -1,11 +1,12 @@
|
||||
from .mnist_LeNet import MNIST_LeNet, MNIST_LeNet_Autoencoder
|
||||
from .elpv_LeNet import ELPV_LeNet, ELPV_LeNet_Autoencoder
|
||||
from .subter_LeNet import SubTer_LeNet, SubTer_LeNet_Autoencoder
|
||||
from .fmnist_LeNet import FashionMNIST_LeNet, FashionMNIST_LeNet_Autoencoder
|
||||
from .cifar10_LeNet import CIFAR10_LeNet, CIFAR10_LeNet_Autoencoder
|
||||
from .mlp import MLP, MLP_Autoencoder
|
||||
from .vae import VariationalAutoencoder
|
||||
from .dgm import DeepGenerativeModel, StackedDeepGenerativeModel
|
||||
from .elpv_LeNet import ELPV_LeNet, ELPV_LeNet_Autoencoder
|
||||
from .fmnist_LeNet import FashionMNIST_LeNet, FashionMNIST_LeNet_Autoencoder
|
||||
from .mlp import MLP, MLP_Autoencoder
|
||||
from .mnist_LeNet import MNIST_LeNet, MNIST_LeNet_Autoencoder
|
||||
from .subter_LeNet import SubTer_LeNet, SubTer_LeNet_Autoencoder
|
||||
from .subter_LeNet_Split import SubTer_LeNet_Split, SubTer_LeNet_Split_Autoencoder
|
||||
from .vae import VariationalAutoencoder
|
||||
|
||||
|
||||
def build_network(net_name, ae_net=None):
|
||||
@@ -15,6 +16,7 @@ def build_network(net_name, ae_net=None):
|
||||
"mnist_LeNet",
|
||||
"elpv_LeNet",
|
||||
"subter_LeNet",
|
||||
"subter_LeNet_Split",
|
||||
"mnist_DGM_M2",
|
||||
"mnist_DGM_M1M2",
|
||||
"fmnist_LeNet",
|
||||
@@ -46,6 +48,9 @@ def build_network(net_name, ae_net=None):
|
||||
if net_name == "subter_LeNet":
|
||||
net = SubTer_LeNet()
|
||||
|
||||
if net_name == "subter_LeNet_Split":
|
||||
net = SubTer_LeNet_Split()
|
||||
|
||||
if net_name == "elpv_LeNet":
|
||||
net = ELPV_LeNet()
|
||||
|
||||
@@ -130,6 +135,7 @@ def build_autoencoder(net_name):
|
||||
implemented_networks = (
|
||||
"elpv_LeNet",
|
||||
"subter_LeNet",
|
||||
"subter_LeNet_Split",
|
||||
"mnist_LeNet",
|
||||
"mnist_DGM_M1M2",
|
||||
"fmnist_LeNet",
|
||||
@@ -154,6 +160,9 @@ def build_autoencoder(net_name):
|
||||
if net_name == "subter_LeNet":
|
||||
ae_net = SubTer_LeNet_Autoencoder()
|
||||
|
||||
if net_name == "subter_LeNet_Split":
|
||||
ae_net = SubTer_LeNet_Split_Autoencoder()
|
||||
|
||||
if net_name == "elpv_LeNet":
|
||||
ae_net = ELPV_LeNet_Autoencoder()
|
||||
|
||||
|
||||
66
Deep-SAD-PyTorch/src/networks/subter_LeNet_Split.py
Normal file
66
Deep-SAD-PyTorch/src/networks/subter_LeNet_Split.py
Normal file
@@ -0,0 +1,66 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from base.base_net import BaseNet
|
||||
|
||||
|
||||
class SubTer_LeNet_Split(BaseNet):
|
||||
def __init__(self, rep_dim=256):
|
||||
super().__init__()
|
||||
|
||||
self.rep_dim = rep_dim
|
||||
self.pool = nn.MaxPool2d(2, 2)
|
||||
|
||||
self.conv1 = nn.Conv2d(1, 8, 5, bias=False, padding=2)
|
||||
self.bn1 = nn.BatchNorm2d(8, eps=1e-04, affine=False)
|
||||
self.conv2 = nn.Conv2d(8, 4, 5, bias=False, padding=2)
|
||||
self.bn2 = nn.BatchNorm2d(4, eps=1e-04, affine=False)
|
||||
self.fc1 = nn.Linear(4 * 64 * 4, self.rep_dim, bias=False)
|
||||
|
||||
def forward(self, x):
|
||||
x = x.view(-1, 1, 16, 256)
|
||||
x = self.conv1(x)
|
||||
x = self.pool(F.leaky_relu(self.bn1(x)))
|
||||
x = self.conv2(x)
|
||||
x = self.pool(F.leaky_relu(self.bn2(x)))
|
||||
x = x.view(int(x.size(0)), -1)
|
||||
x = self.fc1(x)
|
||||
return x
|
||||
|
||||
|
||||
class SubTer_LeNet_Split_Decoder(BaseNet):
|
||||
def __init__(self, rep_dim=256):
|
||||
super().__init__()
|
||||
|
||||
self.rep_dim = rep_dim
|
||||
|
||||
# Decoder network
|
||||
self.fc3 = nn.Linear(self.rep_dim, 4 * 64 * 4, bias=False)
|
||||
self.bn3 = nn.BatchNorm2d(4, eps=1e-04, affine=False)
|
||||
self.deconv1 = nn.ConvTranspose2d(4, 8, 5, bias=False, padding=2)
|
||||
self.bn4 = nn.BatchNorm2d(8, eps=1e-04, affine=False)
|
||||
self.deconv2 = nn.ConvTranspose2d(8, 1, 5, bias=False, padding=2)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc3(x)
|
||||
x = x.view(int(x.size(0)), 4, 4, 64)
|
||||
x = F.interpolate(F.leaky_relu(self.bn3(x)), scale_factor=2)
|
||||
x = self.deconv1(x)
|
||||
x = F.interpolate(F.leaky_relu(self.bn4(x)), scale_factor=2)
|
||||
x = self.deconv2(x)
|
||||
x = torch.sigmoid(x)
|
||||
return x
|
||||
|
||||
|
||||
class SubTer_LeNet_Split_Autoencoder(BaseNet):
|
||||
def __init__(self, rep_dim=256):
|
||||
super().__init__()
|
||||
|
||||
self.rep_dim = rep_dim
|
||||
self.encoder = SubTer_LeNet_Split(rep_dim=rep_dim)
|
||||
self.decoder = SubTer_LeNet_Split_Decoder(rep_dim=rep_dim)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.encoder(x)
|
||||
x = self.decoder(x)
|
||||
return x
|
||||
Reference in New Issue
Block a user