data loading and plotting for results wip

This commit is contained in:
Jan Kowalczyk
2025-09-03 14:55:54 +02:00
parent 3d968c305c
commit ed80faf1e2
16 changed files with 2732 additions and 952 deletions

View File

@@ -2,338 +2,12 @@ from __future__ import annotations
import json
import pickle
from itertools import product
from pathlib import Path
from typing import Any, Dict, List, Optional
import numpy as np
import polars as pl
# --- configure your intended grid here (use the *canonical* strings used in df) ---
NETWORKS_EXPECTED = ["subter_LeNet", "subter_efficient"]
LATENT_DIMS_EXPECTED = [32, 64, 128, 256, 512, 768, 1024]
SEMI_LABELS_EXPECTED = [(0, 0), (50, 10), (500, 100)]
MODELS_EXPECTED = ["deepsad", "isoforest", "ocsvm"]
EVALS_EXPECTED = ["exp_based", "manual_based"]
# If k-fold is uniform, set it. If None, we infer it *per combo* from df.
EXPECTED_K_FOLD: int | None = None # e.g., 3
def add_shape_columns(df: pl.DataFrame) -> pl.DataFrame:
return df.with_columns(
# ROC lens
roc_fpr_len=pl.when(pl.col("roc_curve").is_null())
.then(None)
.otherwise(pl.col("roc_curve").struct.field("fpr").list.len()),
roc_tpr_len=pl.when(pl.col("roc_curve").is_null())
.then(None)
.otherwise(pl.col("roc_curve").struct.field("tpr").list.len()),
roc_thr_len=pl.when(pl.col("roc_curve").is_null())
.then(None)
.otherwise(pl.col("roc_curve").struct.field("thr").list.len()),
# PRC lens
prc_prec_len=pl.when(pl.col("prc_curve").is_null())
.then(None)
.otherwise(pl.col("prc_curve").struct.field("precision").list.len()),
prc_rec_len=pl.when(pl.col("prc_curve").is_null())
.then(None)
.otherwise(pl.col("prc_curve").struct.field("recall").list.len()),
prc_thr_len=pl.when(pl.col("prc_curve").is_null())
.then(None)
.otherwise(pl.col("prc_curve").struct.field("thr").list.len()),
# scores lens
scores_len=pl.when(pl.col("scores").is_null())
.then(None)
.otherwise(pl.col("scores").list.len()),
# deepsad-only arrays (None for others)
idxs_len=pl.when(pl.col("sample_indices").is_null())
.then(None)
.otherwise(pl.col("sample_indices").list.len()),
labels_len=pl.when(pl.col("sample_labels").is_null())
.then(None)
.otherwise(pl.col("sample_labels").list.len()),
vmask_len=pl.when(pl.col("valid_mask").is_null())
.then(None)
.otherwise(pl.col("valid_mask").list.len()),
)
def check_grid_coverage_and_shapes(
df: pl.DataFrame,
networks=NETWORKS_EXPECTED,
latent_dims=LATENT_DIMS_EXPECTED,
semi_labels=SEMI_LABELS_EXPECTED,
models=MODELS_EXPECTED,
evals=EVALS_EXPECTED,
expected_k_fold: int | None = EXPECTED_K_FOLD,
):
dfx = add_shape_columns(df)
# helper: get rows for a specific base combo
def subframe(net, lat, s_norm, s_anom, mdl, ev):
return dfx.filter(
(pl.col("network") == net)
& (pl.col("latent_dim") == lat)
& (pl.col("semi_normals") == s_norm)
& (pl.col("semi_anomalous") == s_anom)
& (pl.col("model") == mdl)
& (pl.col("eval") == ev)
)
missing = []
incomplete = [] # (combo, expected_folds, present_folds)
shape_inconsistent = [] # (combo, metric_name, values_by_fold)
cross_model_diffs = [] # (net, lat, semi, ev, metric_name, shapes_by_model)
# 1) Coverage + within-combo shapes
for net, lat, (s_norm, s_anom), mdl, ev in product(
networks, latent_dims, semi_labels, models, evals
):
sf = subframe(net, lat, s_norm, s_anom, mdl, ev).select(
"fold",
"k_fold_num",
"scores_len",
"roc_fpr_len",
"roc_tpr_len",
"roc_thr_len",
"prc_prec_len",
"prc_rec_len",
"prc_thr_len",
"idxs_len",
"labels_len",
"vmask_len",
)
if sf.height == 0:
missing.append(
dict(
network=net,
latent_dim=lat,
semi_normals=s_norm,
semi_anomalous=s_anom,
model=mdl,
eval=ev,
)
)
continue
# folds present vs expected
folds_present = sorted(sf.get_column("fold").unique().to_list())
if expected_k_fold is not None:
kexp = expected_k_fold
else:
# infer from rows (take max k_fold_num within this combo)
kexp = int(sf.get_column("k_fold_num").max())
all_expected_folds = list(range(kexp))
if folds_present != all_expected_folds:
incomplete.append(
dict(
network=net,
latent_dim=lat,
semi_normals=s_norm,
semi_anomalous=s_anom,
model=mdl,
eval=ev,
expected_folds=all_expected_folds,
present_folds=folds_present,
)
)
# shape consistency across folds (for this combo)
# collect distinct values per metric
shape_cols = [
"scores_len",
"roc_fpr_len",
"roc_tpr_len",
"roc_thr_len",
"prc_prec_len",
"prc_rec_len",
"prc_thr_len",
"idxs_len",
"labels_len",
"vmask_len",
]
for colname in shape_cols:
vals = sf.select(colname).to_series()
uniq = sorted({v for v in vals.to_list()})
# Allow None-only columns (e.g., deepsad-only fields for other models)
if len([u for u in uniq if u is not None]) > 1:
# store per-fold values to help debug
per_fold = (
sf.select("fold", pl.col(colname))
.sort("fold")
.to_dict(as_series=False)
)
shape_inconsistent.append(
dict(
network=net,
latent_dim=lat,
semi_normals=s_norm,
semi_anomalous=s_anom,
model=mdl,
eval=ev,
metric=colname,
per_fold=per_fold,
)
)
# 2) Cross-model comparability at fixed (net,lat,semi,eval)
# We compare shapes that *should* logically match across models:
# - scores_len (same number of test samples)
# - idxs/labels/vmask (only deepsad fills them; we tolerate None elsewhere)
# ROC/PRC binning can differ across models; we *report* those differences for awareness.
base_keys = (
df.select("network", "latent_dim", "semi_normals", "semi_anomalous", "eval")
.unique()
.iter_rows()
)
for net, lat, s_norm, s_anom, ev in base_keys:
rows = (
dfx.filter(
(pl.col("network") == net)
& (pl.col("latent_dim") == lat)
& (pl.col("semi_normals") == s_norm)
& (pl.col("semi_anomalous") == s_anom)
& (pl.col("eval") == ev)
)
.group_by("model")
.agg(
pl.col("scores_len").unique().alias("scores_len_set"),
pl.col("idxs_len").unique().alias("idxs_len_set"),
pl.col("labels_len").unique().alias("labels_len_set"),
pl.col("vmask_len").unique().alias("vmask_len_set"),
pl.col("roc_fpr_len").unique().alias("roc_fpr_len_set"),
pl.col("prc_prec_len").unique().alias("prc_prec_len_set"),
)
.to_dict(as_series=False)
)
if not rows:
continue
# normalize sets
mdls = rows["model"]
s_sets = [set(x) for x in rows["scores_len_set"]]
# compare scores_len across models (ignore None values)
s_normed = [tuple(sorted([v for v in s if v is not None])) for s in s_sets]
if len(set(s_normed)) > 1:
cross_model_diffs.append(
dict(
network=net,
latent_dim=lat,
semi_normals=s_norm,
semi_anomalous=s_anom,
eval=ev,
metric="scores_len",
by_model={m: sorted(list(s_sets[i])) for i, m in enumerate(mdls)},
)
)
# Report ROC/PRC binning diffs (expected)
roc_sets = [set(x) for x in rows["roc_fpr_len_set"]]
if len(set(tuple(sorted(ss)) for ss in roc_sets)) > 1:
cross_model_diffs.append(
dict(
network=net,
latent_dim=lat,
semi_normals=s_norm,
semi_anomalous=s_anom,
eval=ev,
metric="roc_fpr_len",
by_model={m: sorted(list(roc_sets[i])) for i, m in enumerate(mdls)},
)
)
prc_sets = [set(x) for x in rows["prc_prec_len_set"]]
if len(set(tuple(sorted(ss)) for ss in prc_sets)) > 1:
cross_model_diffs.append(
dict(
network=net,
latent_dim=lat,
semi_normals=s_norm,
semi_anomalous=s_anom,
eval=ev,
metric="prc_prec_len",
by_model={m: sorted(list(prc_sets[i])) for i, m in enumerate(mdls)},
)
)
# --- Print a readable report ---
print("\n=== GRID COVERAGE ===")
print(f"Missing combos: {len(missing)}")
for m in missing[:20]:
print(" ", m)
if len(missing) > 20:
print(f" ... (+{len(missing) - 20} more)")
print("\nIncomplete combos (folds missing):", len(incomplete))
for inc in incomplete[:20]:
print(
" ",
{
k: inc[k]
for k in [
"network",
"latent_dim",
"semi_normals",
"semi_anomalous",
"model",
"eval",
]
},
"expected",
inc["expected_folds"],
"present",
inc["present_folds"],
)
if len(incomplete) > 20:
print(f" ... (+{len(incomplete) - 20} more)")
print("\n=== WITHIN-COMBO SHAPE CONSISTENCY (across folds) ===")
print(f"Mismatching groups: {len(shape_inconsistent)}")
for s in shape_inconsistent[:15]:
hdr = {
k: s[k]
for k in [
"network",
"latent_dim",
"semi_normals",
"semi_anomalous",
"model",
"eval",
"metric",
]
}
print(" ", hdr, "values:", s["per_fold"])
if len(shape_inconsistent) > 15:
print(f" ... (+{len(shape_inconsistent) - 15} more)")
print("\n=== CROSS-MODEL COMPARABILITY (by shape) ===")
print(
f"Shape differences across models at fixed (net,lat,semi,eval): {len(cross_model_diffs)}"
)
for s in cross_model_diffs[:15]:
hdr = {
k: s[k]
for k in [
"network",
"latent_dim",
"semi_normals",
"semi_anomalous",
"eval",
"metric",
]
}
print(" ", hdr, "by_model:", s["by_model"])
if len(cross_model_diffs) > 15:
print(f" ... (+{len(cross_model_diffs) - 15} more)")
# Return the raw details if you want to use them programmatically
return {
"missing": missing,
"incomplete": incomplete,
"shape_inconsistent": shape_inconsistent,
"cross_model_diffs": cross_model_diffs,
}
# ------------------------------------------------------------
# Config you can tweak
# ------------------------------------------------------------
@@ -386,6 +60,37 @@ SCHEMA_STATIC = {
"test_time": pl.Float64,
"folder": pl.Utf8,
"k_fold_num": pl.Int32,
"config_json": pl.Utf8, # full config.json as string (for reference)
}
# Pretraining-only (AE) schema
# Pretraining-only (AE) schema — lighter defaults
PRETRAIN_SCHEMA = {
# identifiers / dims
"network": pl.Utf8, # e.g. "LeNet", "efficient"
"latent_dim": pl.Int32,
"semi_normals": pl.Int32,
"semi_anomalous": pl.Int32,
"model": pl.Utf8, # always "ae"
"fold": pl.Int32,
"split": pl.Utf8, # "train" | "test"
# timings and optimization
"time": pl.Float64,
"loss": pl.Float64,
# per-sample arrays (as lists)
"indices": pl.List(pl.Int32),
"labels_exp_based": pl.List(pl.Int32),
"labels_manual_based": pl.List(pl.Int32),
"semi_targets": pl.List(pl.Int32),
"file_ids": pl.List(pl.Int32),
"frame_ids": pl.List(pl.Int32),
"scores": pl.List(pl.Float32), # <— use Float32 to match source and save space
# file id -> name mapping from the result dict
"file_names": pl.List(pl.Struct({"file_id": pl.Int32, "name": pl.Utf8})),
# housekeeping
"folder": pl.Utf8,
"k_fold_num": pl.Int32,
"config_json": pl.Utf8, # full config.json as string (for reference)
}
@@ -406,6 +111,33 @@ def _tolist(x):
return None
def normalize_float_list(a) -> Optional[List[float]]:
if a is None:
return None
if isinstance(a, np.ndarray):
a = a.tolist()
return [None if x is None else float(x) for x in a]
def normalize_file_names(d) -> Optional[List[dict]]:
"""
Convert the 'file_names' dict (keys like numpy.int64 -> str) to a
list[ {file_id:int, name:str} ], sorted by file_id.
"""
if not isinstance(d, dict):
return None
out: List[dict] = []
for k, v in d.items():
try:
file_id = int(k)
except Exception:
# keys are printed as np.int64 in the structure; best-effort cast
continue
out.append({"file_id": file_id, "name": str(v)})
out.sort(key=lambda x: x["file_id"])
return out
def normalize_roc(obj: Any) -> Optional[dict]:
if obj is None:
return None
@@ -597,7 +329,7 @@ def rows_from_ocsvm_default(data: dict, evals: List[str]) -> Dict[str, dict]:
# ------------------------------------------------------------
# Build the Polars DataFrame
# ------------------------------------------------------------
def build_results_frame(root: Path) -> pl.DataFrame:
def load_results_dataframe(root: Path, allow_cache: bool = True) -> pl.DataFrame:
"""
Walks experiment subdirs under `root`. For each (model, fold) it adds rows:
Columns (SCHEMA_STATIC):
@@ -609,12 +341,23 @@ def build_results_frame(root: Path) -> pl.DataFrame:
train_time, test_time,
folder, k_fold_num
"""
if allow_cache:
cache = root / "results_cache.parquet"
if cache.exists():
try:
df = pl.read_parquet(cache)
print(f"[info] loaded cached results frame from {cache}")
return df
except Exception as e:
print(f"[warn] failed to load cache {cache}: {e}")
rows: List[dict] = []
exp_dirs = [p for p in root.iterdir() if p.is_dir()]
for exp_dir in sorted(exp_dirs):
try:
cfg = read_config(exp_dir)
cfg_json = json.dumps(cfg, sort_keys=True)
except Exception as e:
print(f"[warn] skipping {exp_dir.name}: {e}")
continue
@@ -668,6 +411,7 @@ def build_results_frame(root: Path) -> pl.DataFrame:
"test_time": vals["test_time"],
"folder": str(exp_dir),
"k_fold_num": k,
"config_json": cfg_json,
}
)
@@ -687,73 +431,166 @@ def build_results_frame(root: Path) -> pl.DataFrame:
# NOTE: no cast on 'scores' here; it's already List(Struct) per schema.
)
if allow_cache:
try:
df.write_parquet(cache)
print(f"[info] cached results frame to {cache}")
except Exception as e:
print(f"[warn] failed to write cache {cache}: {e}")
return df
# ------------------------------------------------------------
# Example “analysis-ready” queries (Polars idioms)
# ------------------------------------------------------------
def demo_queries(df: pl.DataFrame):
# q1: lazy is fine, then collect
q1 = (
df.lazy()
.filter(
(pl.col("network") == "LeNet")
& (pl.col("latent_dim") == 1024)
& (pl.col("semi_normals") == 0)
& (pl.col("semi_anomalous") == 0)
& (pl.col("eval") == "exp_based")
)
.group_by(["model"])
.agg(pl.col("auc").mean().alias("mean_auc"))
.sort(["mean_auc"], descending=True)
.collect()
def load_pretraining_results_dataframe(
root: Path,
allow_cache: bool = True,
include_train: bool = False, # <— default: store only TEST to keep cache tiny
keep_file_names: bool = False, # <— drop file_names by default; theyre repeated
parquet_compression: str = "zstd",
parquet_compression_level: int = 7, # <— stronger compression than default
) -> pl.DataFrame:
"""
Loads only AE pretraining results: files named `results_ae_<fold>.pkl`.
Produces one row per (experiment, fold, split). By default we:
- include only the TEST split (include_train=False)
- store scores as Float32
- drop the repeated file_names mapping to save space
- write Parquet with zstd(level=7)
"""
if allow_cache:
cache = root / "pretraining_results_cache.parquet"
if cache.exists():
try:
df = pl.read_parquet(cache)
print(f"[info] loaded cached pretraining frame from {cache}")
return df
except Exception as e:
print(f"[warn] failed to load pretraining cache {cache}: {e}")
rows: List[dict] = []
exp_dirs = [p for p in root.iterdir() if p.is_dir()]
for exp_dir in sorted(exp_dirs):
try:
cfg = read_config(exp_dir)
cfg_json = json.dumps(cfg, sort_keys=True)
except Exception as e:
print(f"[warn] skipping {exp_dir.name} (pretraining): {e}")
continue
network = cfg.get("net_name")
latent_dim = int(cfg.get("latent_space_dim"))
semi_normals = int(cfg.get("num_known_normal"))
semi_anomalous = int(cfg.get("num_known_outlier"))
k = int(cfg.get("k_fold_num"))
# Only test split by default (include_train=False)
splits = ("train", "test") if include_train else ("test",)
for fold in range(k):
pkl = exp_dir / f"results_ae_{fold}.pkl"
if not pkl.exists():
continue
try:
data = read_pickle(pkl) # expected: {"train": {...}, "test": {...}}
except Exception as e:
print(f"[warn] failed to read {pkl.name}: {e}")
continue
for split in splits:
splitd = data.get(split)
if not isinstance(splitd, dict):
continue
rows.append(
{
"network": network,
"latent_dim": latent_dim,
"semi_normals": semi_normals,
"semi_anomalous": semi_anomalous,
"model": "ae",
"fold": fold,
"split": split,
"time": float(splitd.get("time"))
if splitd.get("time") is not None
else None,
"loss": float(splitd.get("loss"))
if splitd.get("loss") is not None
else None,
# ints as Int32, scores as Float32 to save space
"indices": normalize_int_list(splitd.get("indices")),
"labels_exp_based": normalize_int_list(
splitd.get("labels_exp_based")
),
"labels_manual_based": normalize_int_list(
splitd.get("labels_manual_based")
),
"semi_targets": normalize_int_list(splitd.get("semi_targets")),
"file_ids": normalize_int_list(splitd.get("file_ids")),
"frame_ids": normalize_int_list(splitd.get("frame_ids")),
"scores": (
None
if splitd.get("scores") is None
else [
float(x)
for x in (
splitd["scores"].tolist()
if isinstance(splitd["scores"], np.ndarray)
else splitd["scores"]
)
]
),
"file_names": normalize_file_names(splitd.get("file_names"))
if keep_file_names
else None,
"folder": str(exp_dir),
"k_fold_num": k,
"config_json": cfg_json,
}
)
if not rows:
return pl.DataFrame(schema=PRETRAIN_SCHEMA)
df = pl.DataFrame(rows, schema=PRETRAIN_SCHEMA)
# Cast/optimize a bit (categoricals, ints, floats)
df = df.with_columns(
pl.col("network", "model", "split").cast(pl.Categorical),
pl.col(
"latent_dim", "semi_normals", "semi_anomalous", "fold", "k_fold_num"
).cast(pl.Int32),
pl.col("time", "loss").cast(pl.Float64),
pl.col("scores").cast(pl.List(pl.Float32)), # ensure downcast took
)
# q2: do the filtering eagerly, then pivot (LazyFrame has no .pivot)
base = df.filter(
(pl.col("model") == "deepsad")
& (pl.col("eval") == "exp_based")
& (pl.col("network") == "LeNet")
& (pl.col("semi_normals") == 0)
& (pl.col("semi_anomalous") == 0)
).select("fold", "latent_dim", "auc")
q2 = base.pivot(
values="auc",
index="fold",
columns="latent_dim",
aggregate_function="first", # or "mean" if duplicates exist
).sort("fold")
if allow_cache:
try:
cache = root / "pretraining_results_cache.parquet"
df.write_parquet(
cache,
compression=parquet_compression,
compression_level=parquet_compression_level,
statistics=True,
)
print(
f"[info] cached pretraining frame to {cache} "
f"({parquet_compression}, level={parquet_compression_level})"
)
except Exception as e:
print(f"[warn] failed to write pretraining cache {cache}: {e}")
# roc_subset: eager filter/select, then explode struct fields
roc_subset = (
df.filter(
(pl.col("model") == "ocsvm")
& (pl.col("eval") == "manual_based")
& (pl.col("network") == "efficient")
& (pl.col("latent_dim") == 1024)
& (pl.col("semi_normals") == 0)
& (pl.col("semi_anomalous") == 0)
)
.select("fold", "roc_curve")
.with_columns(
pl.col("roc_curve").struct.field("fpr").alias("fpr"),
pl.col("roc_curve").struct.field("tpr").alias("tpr"),
pl.col("roc_curve").struct.field("thr").alias("thr"),
)
)
return q1, q2, roc_subset
return df
def main():
root = Path("/home/fedex/mt/results/done")
df = build_results_frame(root)
q1, q2, roc_subset = demo_queries(df)
df = load_results_dataframe(root, allow_cache=True)
print(df.shape, df.head())
# --- run it ---
report = check_grid_coverage_and_shapes(df)
print(report)
df_pre = load_pretraining_results_dataframe(root, allow_cache=True)
print("pretraining:", df_pre.shape, df_pre.head())
if __name__ == "__main__":