# subter_lenet_arch.py # Requires running from inside the PlotNeuralNet repo, like: python3 ../subter_lenet_arch.py import sys, argparse sys.path.append("../") # import pycore from repo root from pycore.tikzeng import * parser = argparse.ArgumentParser() parser.add_argument("--rep_dim", type=int, default=1024, help="latent size for FC") args = parser.parse_args() REP = int(args.rep_dim) # Visual scales so the huge width doesn't dominate the figure H32, H16, H8, H1 = 26, 18, 12, 1 D2048, D1024, D512, D256, D128, D1 = 52, 36, 24, 12, 6, 1 W1, W4, W8, W16, W32 = 1, 2, 2, 4, 8 arch = [ to_head(".."), to_cor(), to_begin(), # --------------------------- ENCODER --------------------------- # Input 1×32×2048 (caption carries H×W; s_filer is numeric) to_Conv( "input", zlabeloffset=0.2, s_filer="{{2048×32}}", n_filer=1, offset="(0,0,0)", to="(0,0,0)", height=H32, depth=D2048, width=W1, caption="Input", ), # Conv1 (5x5, same): 1->8, 32×2048 to_Conv( "dwconv1", s_filer="", n_filer=1, offset="(2,0,0)", to="(input-east)", height=H32, depth=D2048, width=W1, caption="", ), to_Conv( "dwconv2", s_filer="{{2048×32}}", zlabeloffset=0.15, n_filer=16, offset="(0,0,0)", to="(dwconv1-east)", height=H32, depth=D2048, width=W16, caption="Conv1", ), # Pool1 2×2: 32×2048 -> 16×1024 # to_connection("input", "conv1"), to_Pool( "pool1", offset="(0,0,0)", zlabeloffset=0.3, s_filer="{{512×32}}", to="(dwconv2-east)", height=H32, depth=D512, width=W16, caption="", ), # Conv2 (5x5, same): 8->4, stays 16×1024 to_Conv( "dwconv3", s_filer="", n_filer=1, offset="(2,0,0)", to="(pool1-east)", height=H32, depth=D512, width=W1, caption="", ), to_Conv( "dwconv4", n_filer=32, zlabeloffset=0.3, s_filer="{{512×32}}", offset="(0,0,0)", to="(dwconv3-east)", height=H32, depth=D512, width=W32, caption="Conv2", ), # Pool2 2×2: 16×1024 -> 8×512 # to_connection("pool1", "conv2"), to_Pool( "pool2", offset="(0,0,0)", zlabeloffset=0.45, s_filer="{{256×16}}", to="(dwconv4-east)", height=H16, depth=D256, width=W32, caption="", ), to_Pool( "pool3", offset="(0,0,0)", zlabeloffset=0.45, s_filer="{{128×8}}", to="(pool2-east)", height=H8, depth=D128, width=W32, caption="", ), to_Conv( "squeeze", n_filer=8, zlabeloffset=0.45, s_filer="{{128×8}}", offset="(2,0,0)", to="(pool3-east)", height=H8, depth=D128, width=W8, caption="Squeeze", ), # FC -> rep_dim (use numeric n_filer) to_fc( "fc1", n_filer="{{8×128×8}}", zlabeloffset=0.5, offset="(2,0,0)", to="(squeeze-east)", height=H1, depth=D512, width=W1, caption=f"FC", ), # to_connection("pool2", "fc1"), # --------------------------- LATENT --------------------------- to_Conv( "latent", n_filer="", s_filer="latent dim", offset="(2,0,0)", to="(fc1-east)", height=H8 * 1.6, depth=D1, width=W1, caption=f"Latent Space", ), to_end(), ] def main(): name = "subter_lenet_arch" to_generate(arch, name + ".tex") if __name__ == "__main__": main()