import json import torch from base.base_dataset import BaseADDataset from networks.main import build_network, build_autoencoder from optim import SemiDeepGenerativeTrainer, VAETrainer class SemiDeepGenerativeModel(object): """A class for the Semi-Supervised Deep Generative model (M1+M2 model). Paper: Kingma et al. (2014). Semi-supervised learning with deep generative models. In NIPS (pp. 3581-3589). Link: https://papers.nips.cc/paper/5352-semi-supervised-learning-with-deep-generative-models.pdf Attributes: net_name: A string indicating the name of the neural network to use. net: The neural network. trainer: SemiDeepGenerativeTrainer to train a Semi-Supervised Deep Generative model. optimizer_name: A string indicating the optimizer to use for training. results: A dictionary to save the results. """ def __init__(self, alpha: float = 0.1): """Inits SemiDeepGenerativeModel.""" self.alpha = alpha self.net_name = None self.net = None self.trainer = None self.optimizer_name = None self.vae_net = None # variational autoencoder network for pretraining self.vae_trainer = None self.vae_optimizer_name = None self.results = { "train_time": None, "test_auc": None, "test_time": None, "test_scores": None, } self.vae_results = {"train_time": None, "test_auc": None, "test_time": None} def set_vae(self, net_name): """Builds the variational autoencoder network for pretraining.""" self.net_name = net_name self.vae_net = build_autoencoder(self.net_name) # VAE for pretraining def set_network(self, net_name): """Builds the neural network.""" self.net_name = net_name self.net = build_network(net_name, ae_net=self.vae_net) # full M1+M2 model def train( self, dataset: BaseADDataset, optimizer_name: str = "adam", lr: float = 0.001, n_epochs: int = 50, lr_milestones: tuple = (), batch_size: int = 128, weight_decay: float = 1e-6, device: str = "cuda", n_jobs_dataloader: int = 0, ): """Trains the Semi-Supervised Deep Generative model on the training data.""" self.optimizer_name = optimizer_name self.trainer = SemiDeepGenerativeTrainer( alpha=self.alpha, optimizer_name=optimizer_name, lr=lr, n_epochs=n_epochs, lr_milestones=lr_milestones, batch_size=batch_size, weight_decay=weight_decay, device=device, n_jobs_dataloader=n_jobs_dataloader, ) self.net = self.trainer.train(dataset, self.net) self.results["train_time"] = self.trainer.train_time def test( self, dataset: BaseADDataset, device: str = "cuda", n_jobs_dataloader: int = 0 ): """Tests the Semi-Supervised Deep Generative model on the test data.""" if self.trainer is None: self.trainer = SemiDeepGenerativeTrainer( alpha=self.alpha, device=device, n_jobs_dataloader=n_jobs_dataloader ) self.trainer.test(dataset, self.net) # Get results self.results["test_auc"] = self.trainer.test_auc self.results["test_time"] = self.trainer.test_time self.results["test_scores"] = self.trainer.test_scores def pretrain( self, dataset: BaseADDataset, optimizer_name: str = "adam", lr: float = 0.001, n_epochs: int = 100, lr_milestones: tuple = (), batch_size: int = 128, weight_decay: float = 1e-6, device: str = "cuda", n_jobs_dataloader: int = 0, ): """Pretrains a variational autoencoder (M1) for the Semi-Supervised Deep Generative model.""" # Train self.vae_optimizer_name = optimizer_name self.vae_trainer = VAETrainer( optimizer_name=optimizer_name, lr=lr, n_epochs=n_epochs, lr_milestones=lr_milestones, batch_size=batch_size, weight_decay=weight_decay, device=device, n_jobs_dataloader=n_jobs_dataloader, ) self.vae_net = self.vae_trainer.train(dataset, self.vae_net) # Get train results self.vae_results["train_time"] = self.vae_trainer.train_time # Test self.vae_trainer.test(dataset, self.vae_net) # Get test results self.vae_results["test_auc"] = self.vae_trainer.test_auc self.vae_results["test_time"] = self.vae_trainer.test_time def save_model(self, export_model): """Save a Semi-Supervised Deep Generative model to export_model.""" net_dict = self.net.state_dict() torch.save({"net_dict": net_dict}, export_model) def load_model(self, model_path): """Load a Semi-Supervised Deep Generative model from model_path.""" model_dict = torch.load(model_path) self.net.load_state_dict(model_dict["net_dict"]) def save_results(self, export_json): """Save results dict to a JSON-file.""" with open(export_json, "w") as fp: json.dump(self.results, fp) def save_vae_results(self, export_json): """Save variational autoencoder results dict to a JSON-file.""" with open(export_json, "w") as fp: json.dump(self.vae_results, fp)