from base.base_trainer import BaseTrainer from base.base_dataset import BaseADDataset from base.base_net import BaseNet from torch.utils.data.dataloader import DataLoader from sklearn.metrics import roc_auc_score import logging import time import torch import torch.optim as optim import numpy as np class DeepSADTrainer(BaseTrainer): def __init__(self, c, eta: float, optimizer_name: str = 'adam', lr: float = 0.001, n_epochs: int = 150, lr_milestones: tuple = (), batch_size: int = 128, weight_decay: float = 1e-6, device: str = 'cuda', n_jobs_dataloader: int = 0): super().__init__(optimizer_name, lr, n_epochs, lr_milestones, batch_size, weight_decay, device, n_jobs_dataloader) # Deep SAD parameters self.c = torch.tensor(c, device=self.device) if c is not None else None self.eta = eta # Optimization parameters self.eps = 1e-6 # Results self.train_time = None self.test_auc = None self.test_time = None self.test_scores = None def train(self, dataset: BaseADDataset, net: BaseNet): logger = logging.getLogger() # Get train data loader train_loader, _ = dataset.loaders(batch_size=self.batch_size, num_workers=self.n_jobs_dataloader) # Set device for network net = net.to(self.device) # Set optimizer (Adam optimizer for now) optimizer = optim.Adam(net.parameters(), lr=self.lr, weight_decay=self.weight_decay) # Set learning rate scheduler scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=self.lr_milestones, gamma=0.1) # Initialize hypersphere center c (if c not loaded) if self.c is None: logger.info('Initializing center c...') self.c = self.init_center_c(train_loader, net) logger.info('Center c initialized.') # Training logger.info('Starting training...') start_time = time.time() net.train() for epoch in range(self.n_epochs): scheduler.step() if epoch in self.lr_milestones: logger.info(' LR scheduler: new learning rate is %g' % float(scheduler.get_lr()[0])) epoch_loss = 0.0 n_batches = 0 epoch_start_time = time.time() for data in train_loader: inputs, _, semi_targets, _ = data inputs, semi_targets = inputs.to(self.device), semi_targets.to(self.device) # Zero the network parameter gradients optimizer.zero_grad() # Update network parameters via backpropagation: forward + backward + optimize outputs = net(inputs) dist = torch.sum((outputs - self.c) ** 2, dim=1) losses = torch.where(semi_targets == 0, dist, self.eta * ((dist + self.eps) ** semi_targets.float())) loss = torch.mean(losses) loss.backward() optimizer.step() epoch_loss += loss.item() n_batches += 1 # log epoch statistics epoch_train_time = time.time() - epoch_start_time logger.info(f'| Epoch: {epoch + 1:03}/{self.n_epochs:03} | Train Time: {epoch_train_time:.3f}s ' f'| Train Loss: {epoch_loss / n_batches:.6f} |') self.train_time = time.time() - start_time logger.info('Training Time: {:.3f}s'.format(self.train_time)) logger.info('Finished training.') return net def test(self, dataset: BaseADDataset, net: BaseNet): logger = logging.getLogger() # Get test data loader _, test_loader = dataset.loaders(batch_size=self.batch_size, num_workers=self.n_jobs_dataloader) # Set device for network net = net.to(self.device) # Testing logger.info('Starting testing...') epoch_loss = 0.0 n_batches = 0 start_time = time.time() idx_label_score = [] net.eval() with torch.no_grad(): for data in test_loader: inputs, labels, semi_targets, idx = data inputs = inputs.to(self.device) labels = labels.to(self.device) semi_targets = semi_targets.to(self.device) idx = idx.to(self.device) outputs = net(inputs) dist = torch.sum((outputs - self.c) ** 2, dim=1) losses = torch.where(semi_targets == 0, dist, self.eta * ((dist + self.eps) ** semi_targets.float())) loss = torch.mean(losses) scores = dist # Save triples of (idx, label, score) in a list idx_label_score += list(zip(idx.cpu().data.numpy().tolist(), labels.cpu().data.numpy().tolist(), scores.cpu().data.numpy().tolist())) epoch_loss += loss.item() n_batches += 1 self.test_time = time.time() - start_time self.test_scores = idx_label_score # Compute AUC _, labels, scores = zip(*idx_label_score) labels = np.array(labels) scores = np.array(scores) self.test_auc = roc_auc_score(labels, scores) # Log results logger.info('Test Loss: {:.6f}'.format(epoch_loss / n_batches)) logger.info('Test AUC: {:.2f}%'.format(100. * self.test_auc)) logger.info('Test Time: {:.3f}s'.format(self.test_time)) logger.info('Finished testing.') def init_center_c(self, train_loader: DataLoader, net: BaseNet, eps=0.1): """Initialize hypersphere center c as the mean from an initial forward pass on the data.""" n_samples = 0 c = torch.zeros(net.rep_dim, device=self.device) net.eval() with torch.no_grad(): for data in train_loader: # get the inputs of the batch inputs, _, _, _ = data inputs = inputs.to(self.device) outputs = net(inputs) n_samples += outputs.shape[0] c += torch.sum(outputs, dim=0) c /= n_samples # If c_i is too close to 0, set to +-eps. Reason: a zero unit can be trivially matched with zero weights. c[(abs(c) < eps) & (c < 0)] = -eps c[(abs(c) < eps) & (c > 0)] = eps return c