import torch import torch.nn as nn import torch.nn.functional as F import torch_receptive_field from base.base_net import BaseNet class SubTer_LeNet(BaseNet): def __init__(self, rep_dim=1024): super().__init__() self.input_dim = (1, 32, 2048) # Input dimension for the network self.rep_dim = rep_dim self.pool = nn.MaxPool2d(2, 2) self.conv1 = nn.Conv2d(1, 8, 5, bias=False, padding=2) self.bn1 = nn.BatchNorm2d(8, eps=1e-04, affine=False) self.conv2 = nn.Conv2d(8, 4, 5, bias=False, padding=2) self.bn2 = nn.BatchNorm2d(4, eps=1e-04, affine=False) self.fc1 = nn.Linear(4 * 512 * 8, self.rep_dim, bias=False) def forward(self, x): x = x.view(-1, 1, 32, 2048) x = self.conv1(x) x = self.pool(F.leaky_relu(self.bn1(x))) x = self.conv2(x) x = self.pool(F.leaky_relu(self.bn2(x))) x = x.view(int(x.size(0)), -1) x = self.fc1(x) return x def summary(self, receptive_field: bool = False): # first run super method to log parameters and structure super().summary(receptive_field=receptive_field) self.logger.info("torch_receptive_field:") torch_receptive_field.receptive_field(self, input_size=self.input_dim) # torch_receptive_field.receptive_field_for_unit(rf, "2", (2,2)) class SubTer_LeNet_Decoder(BaseNet): def __init__(self, rep_dim=1024): super().__init__() self.rep_dim = rep_dim # Decoder network self.fc3 = nn.Linear(self.rep_dim, 4 * 512 * 8, bias=False) self.bn3 = nn.BatchNorm2d(4, eps=1e-04, affine=False) self.deconv1 = nn.ConvTranspose2d(4, 8, 5, bias=False, padding=2) self.bn4 = nn.BatchNorm2d(8, eps=1e-04, affine=False) self.deconv2 = nn.ConvTranspose2d(8, 1, 5, bias=False, padding=2) def forward(self, x): x = self.fc3(x) x = x.view(int(x.size(0)), 4, 8, 512) x = F.interpolate(F.leaky_relu(self.bn3(x)), scale_factor=2) x = self.deconv1(x) x = F.interpolate(F.leaky_relu(self.bn4(x)), scale_factor=2) x = self.deconv2(x) x = torch.sigmoid(x) return x class SubTer_LeNet_Autoencoder(BaseNet): def __init__(self, rep_dim=1024): super().__init__() self.input_dim = (1, 32, 2048) # Input dimension for the network self.rep_dim = rep_dim self.encoder = SubTer_LeNet(rep_dim=rep_dim) self.decoder = SubTer_LeNet_Decoder(rep_dim=rep_dim) def forward(self, x): x = self.encoder(x) x = self.decoder(x) return x