from configargparse import ( ArgParser, YAMLConfigFileParser, ArgumentDefaultsRawHelpFormatter, ) from sys import exit from pathlib import Path from pointcloudset import Dataset from rich.progress import track from pandas import DataFrame from PIL import Image import matplotlib import numpy as np matplotlib.use("Agg") import matplotlib.pyplot as plt from util import ( angle, angle_width, positive_int, load_dataset, existing_path, create_video_from_images, calculate_average_frame_rate, get_colormap_with_special_missing_color, ) def fill_sparse_data(data: DataFrame, horizontal_resolution: int) -> DataFrame: complete_original_ids = DataFrame( { "original_id": np.arange( 0, (data["ring"].max() + 1) * horizontal_resolution, dtype=np.uint32, ) } ) data = complete_original_ids.merge(data, on="original_id", how="left") data["ring"] = data["original_id"] // horizontal_resolution data["horizontal_position"] = data["original_id"] % horizontal_resolution return data def crop_lidar_data_to_roi( data: DataFrame, roi_angle_start: float, roi_angle_width: float, horizontal_resolution: int, ) -> tuple[DataFrame, int]: if roi_angle_width == 360: return data, horizontal_resolution roi_index_start = int(horizontal_resolution / 360 * roi_angle_start) roi_index_width = int(horizontal_resolution / 360 * roi_angle_width) roi_index_end = roi_index_start + roi_index_width if roi_index_end < horizontal_resolution: cropped_data = data.iloc[:, roi_index_start:roi_index_end] else: roi_index_end = roi_index_end - horizontal_resolution cropped_data = data.iloc[:, roi_index_end:roi_index_start] return cropped_data, roi_index_width def create_projection_data( dataset: Dataset, horizontal_resolution: int, roi_angle_start: float, roi_angle_width: float, ) -> list[Path]: converted_lidar_frames = [] for i, pc in track( enumerate(dataset, 1), description="Rendering images...", total=len(dataset) ): lidar_data = fill_sparse_data(pc.data, horizontal_resolution) lidar_data["normalized_range"] = 1 / np.sqrt( lidar_data["x"] ** 2 + lidar_data["y"] ** 2 + lidar_data["z"] ** 2 ) lidar_data = lidar_data.pivot( index="ring", columns="horizontal_position", values="normalized_range" ) lidar_data, _ = crop_lidar_data_to_roi( lidar_data, roi_angle_start, roi_angle_width, horizontal_resolution ) converted_lidar_frames.append(lidar_data.to_numpy()) return np.stack(converted_lidar_frames, axis=0) def create_2d_projection( df: DataFrame, output_file_path: Path, tmp_file_path: Path, colormap_name: str, missing_data_color: str, reverse_colormap: bool, horizontal_resolution: int, vertical_resolution: int, ): fig, ax = plt.subplots( figsize=(float(horizontal_resolution) / 100, float(vertical_resolution) / 100) ) ax.imshow( df, cmap=get_colormap_with_special_missing_color( colormap_name, missing_data_color, reverse_colormap ), aspect="auto", ) ax.axis("off") fig.subplots_adjust(left=0, right=1, top=1, bottom=0) plt.savefig(tmp_file_path, dpi=100, bbox_inches="tight", pad_inches=0) plt.close() img = Image.open(tmp_file_path) img_resized = img.resize( (horizontal_resolution, vertical_resolution), Image.LANCZOS ) img_resized.save(output_file_path) tmp_file_path.unlink() def render_2d_images( dataset: Dataset, output_path: Path, colormap_name: str, missing_data_color: str, reverse_colormap: bool, horizontal_resolution: int, vertical_scale: int, horizontal_scale: int, roi_angle_start: float, roi_angle_width: float, ) -> list[Path]: rendered_images = [] for i, pc in track( enumerate(dataset, 1), description="Rendering images...", total=len(dataset) ): image_data = fill_sparse_data(pc.data, horizontal_resolution).pivot( index="ring", columns="horizontal_position", values="range" ) image_data, output_horizontal_resolution = crop_lidar_data_to_roi( image_data, roi_angle_start, roi_angle_width, horizontal_resolution ) normalized_data = (image_data - image_data.min().min()) / ( image_data.max().max() - image_data.min().min() ) image_path = create_2d_projection( normalized_data, output_path / f"frame_{i:04d}.png", output_path / "tmp.png", colormap_name, missing_data_color, reverse_colormap, horizontal_resolution=output_horizontal_resolution * horizontal_scale, vertical_resolution=(pc.data["ring"].max() + 1) * vertical_scale, ) rendered_images.append(image_path) return rendered_images def main() -> int: parser = ArgParser( config_file_parser_class=YAMLConfigFileParser, default_config_files=["render2d_config.yaml"], formatter_class=ArgumentDefaultsRawHelpFormatter, description="Render a 2d projection of a point cloud", ) parser.add_argument( "--render-config-file", is_config_file=True, help="yaml config file path" ) parser.add_argument( "--input-experiment-path", required=True, type=existing_path, help="path to experiment. (directly to bag file, to parent folder for mcap)", ) parser.add_argument( "--pointcloud-topic", default="/ouster/points", type=str, help="topic in the ros/mcap bag file containing the point cloud data", ) parser.add_argument( "--output-path", default=Path("./output"), type=Path, help="path rendered frames should be written to", ) parser.add_argument( "--output-images", type=bool, default=True, help="if rendered frames should be outputted as images", ) parser.add_argument( "--output-video", type=bool, default=True, help="if rendered frames should be outputted as a video", ) parser.add_argument( "--output-pickle", default=True, type=bool, help="if the processed data should be saved as a pickle file", ) parser.add_argument( "--skip-existing", default=True, type=bool, help="if true will skip rendering existing files", ) parser.add_argument( "--colormap-name", default="viridis", type=str, help="name of matplotlib colormap to be used", ) parser.add_argument( "--missing-data-color", default="black", type=str, help="name of color to be used for missing data", ) parser.add_argument( "--reverse-colormap", default=True, type=bool, help="if colormap should be reversed", ) parser.add_argument( "--horizontal-resolution", default=2048, type=positive_int, help="number of horizontal lidar data points", ) parser.add_argument( "--vertical-scale", default=1, type=positive_int, help="multiplier for vertical scale, for better visualization", ) parser.add_argument( "--horizontal-scale", default=1, type=positive_int, help="multiplier for horizontal scale, for better visualization", ) parser.add_argument( "--roi-angle-start", default=0, type=angle, help="angle where roi starts", ) parser.add_argument( "--roi-angle-width", default=360, type=angle_width, help="width of roi in degrees", ) args = parser.parse_args() output_path = args.output_path / args.input_experiment_path.stem output_path.mkdir(parents=True, exist_ok=True) # Create temporary folder for images, if outputting images we use the output folder itself as temp folder tmp_path = output_path / "frames" if args.output_images else output_path / "tmp" tmp_path.mkdir(parents=True, exist_ok=True) dataset = load_dataset(args.input_experiment_path, args.pointcloud_topic) images = render_2d_images( dataset, tmp_path, args.colormap_name, args.missing_data_color, args.reverse_colormap, args.horizontal_resolution, args.vertical_scale, args.horizontal_scale, args.roi_angle_start, args.roi_angle_width, ) if args.output_pickle: output_pickle_path = ( output_path / args.input_experiment_path.stem ).with_suffix(".pkl") processed_range_data = create_projection_data( dataset, args.horizontal_resolution, args.roi_angle_start, args.roi_angle_width, ) processed_range_data.dump(output_pickle_path) if args.output_video: input_images_pattern = f"{tmp_path}/frame_%04d.png" create_video_from_images( input_images_pattern, (output_path / args.input_experiment_path.stem).with_suffix(".mp4"), calculate_average_frame_rate(dataset), ) if not args.output_images: for image in images: image.unlink() tmp_path.rmdir() return 0 if __name__ == "__main__": exit(main())