% $ biblatex auxiliary file $ % $ biblatex bbl format version 3.3 $ % Do not modify the above lines! % % This is an auxiliary file used by the 'biblatex' package. % This file may safely be deleted. It will be recreated by % biber as required. % \begingroup \makeatletter \@ifundefined{ver@biblatex.sty} {\@latex@error {Missing 'biblatex' package} {The bibliography requires the 'biblatex' package.} \aftergroup\endinput} {} \endgroup \refsection{0} \datalist[entry]{none/global//global/global/global} \entry{anomaly_detection_history}{article}{}{} \name{author}{1}{}{% {{hash=7b30fcb84658b1f3051567875c8aa881}{% family={and}, familyi={a\bibinitperiod}, given={F.Y.\bibnamedelimi Edgeworth}, giveni={F\bibinitperiod\bibinitdelim E\bibinitperiod}}}% } \list{publisher}{1}{% {Taylor \& Francis}% } \strng{namehash}{7b30fcb84658b1f3051567875c8aa881} \strng{fullhash}{7b30fcb84658b1f3051567875c8aa881} \strng{fullhashraw}{7b30fcb84658b1f3051567875c8aa881} \strng{bibnamehash}{7b30fcb84658b1f3051567875c8aa881} \strng{authorbibnamehash}{7b30fcb84658b1f3051567875c8aa881} \strng{authornamehash}{7b30fcb84658b1f3051567875c8aa881} \strng{authorfullhash}{7b30fcb84658b1f3051567875c8aa881} \strng{authorfullhashraw}{7b30fcb84658b1f3051567875c8aa881} \field{sortinit}{1} \field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{journaltitle}{The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science} \field{number}{143} \field{title}{XLI. On discordant observations} \field{volume}{23} \field{year}{1887} \field{pages}{364\bibrangedash 375} \range{pages}{12} \verb{doi} \verb 10.1080/14786448708628471 \endverb \verb{eprint} \verb https://doi.org/10.1080/14786448708628471 \endverb \verb{urlraw} \verb https://doi.org/10.1080/14786448708628471 \endverb \verb{url} \verb https://doi.org/10.1080/14786448708628471 \endverb \endentry \entry{anomaly_detection_medical}{inproceedings}{}{} \name{author}{6}{}{% {{hash=971f423121cbfa17c708bb796eb94a32}{% family={{Wei}}, familyi={W\bibinitperiod}, given={Qi}, giveni={Q\bibinitperiod}}}% {{hash=04fbb589cf9e1149a3b5b12b25bfa30f}{% family={{Ren}}, familyi={R\bibinitperiod}, given={Yinhao}, giveni={Y\bibinitperiod}}}% {{hash=87e1cd3cb3c64f79a269f8eb6ca4689c}{% family={{Hou}}, familyi={H\bibinitperiod}, given={Rui}, giveni={R\bibinitperiod}}}% {{hash=34347055f614fc349a706311a3a05f3e}{% family={{Shi}}, familyi={S\bibinitperiod}, given={Bibo}, giveni={B\bibinitperiod}}}% {{hash=6a4ef2229751629e86b8fc5c744ba745}{% family={{Lo}}, familyi={L\bibinitperiod}, given={Joseph\bibnamedelima Y.}, giveni={J\bibinitperiod\bibinitdelim Y\bibinitperiod}}}% {{hash=ce681750caa3045d8bb30c05a70f10d7}{% family={{Carin}}, familyi={C\bibinitperiod}, given={Lawrence}, giveni={L\bibinitperiod}}}% } \name{editor}{2}{}{% {{hash=8c1c0553a94c7fa28d4f2c689e98bef6}{% family={{Petrick}}, familyi={P\bibinitperiod}, given={Nicholas}, giveni={N\bibinitperiod}}}% {{hash=10f2e21b65cb187d92ec6355cb0c3aa0}{% family={{Mori}}, familyi={M\bibinitperiod}, given={Kensaku}, giveni={K\bibinitperiod}}}% } \strng{namehash}{539de36e89860a869a761b2141581a3c} \strng{fullhash}{11e70c19480cff12df0fa7400af30571} \strng{fullhashraw}{11e70c19480cff12df0fa7400af30571} \strng{bibnamehash}{11e70c19480cff12df0fa7400af30571} \strng{authorbibnamehash}{11e70c19480cff12df0fa7400af30571} \strng{authornamehash}{539de36e89860a869a761b2141581a3c} \strng{authorfullhash}{11e70c19480cff12df0fa7400af30571} \strng{authorfullhashraw}{11e70c19480cff12df0fa7400af30571} \strng{editorbibnamehash}{512f994c8b24f6904411c2cbb6350d94} \strng{editornamehash}{512f994c8b24f6904411c2cbb6350d94} \strng{editorfullhash}{512f994c8b24f6904411c2cbb6350d94} \strng{editorfullhashraw}{512f994c8b24f6904411c2cbb6350d94} \field{sortinit}{2} \field{sortinithash}{8b555b3791beccb63322c22f3320aa9a} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{booktitle}{Medical Imaging 2018: Computer-Aided Diagnosis} \field{eid}{105751M} \field{month}{2} \field{series}{Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series} \field{title}{{Anomaly detection for medical images based on a one-class classification}} \field{volume}{10575} \field{year}{2018} \field{pages}{105751M} \range{pages}{1} \verb{doi} \verb 10.1117/12.2293408 \endverb \endentry \entry{anomaly_detection_defi}{article}{}{} \name{author}{3}{}{% {{hash=e9f6cd3f9ad259e81be366989ed3a916}{% family={Ul\bibnamedelima Hassan}, familyi={U\bibinitperiod\bibinitdelim H\bibinitperiod}, given={Muneeb}, giveni={M\bibinitperiod}}}% {{hash=033f02c49dcfe48340c4cb560dbb16e3}{% family={Rehmani}, familyi={R\bibinitperiod}, given={Mubashir\bibnamedelima Husain}, giveni={M\bibinitperiod\bibinitdelim H\bibinitperiod}}}% {{hash=2329606ee30094bfea6d6c7b6f1ede90}{% family={Chen}, familyi={C\bibinitperiod}, given={Jinjun}, giveni={J\bibinitperiod}}}% } \strng{namehash}{015fa610378b7a2e3756a243a9e855c8} \strng{fullhash}{821f90310e969ba376202bd325997bde} \strng{fullhashraw}{821f90310e969ba376202bd325997bde} \strng{bibnamehash}{821f90310e969ba376202bd325997bde} \strng{authorbibnamehash}{821f90310e969ba376202bd325997bde} \strng{authornamehash}{015fa610378b7a2e3756a243a9e855c8} \strng{authorfullhash}{821f90310e969ba376202bd325997bde} \strng{authorfullhashraw}{821f90310e969ba376202bd325997bde} \field{sortinit}{3} \field{sortinithash}{ad6fe7482ffbd7b9f99c9e8b5dccd3d7} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{journaltitle}{IEEE Communications Surveys \& Tutorials} \field{number}{1} \field{title}{Anomaly Detection in Blockchain Networks: A Comprehensive Survey} \field{volume}{25} \field{year}{2023} \field{pages}{289\bibrangedash 318} \range{pages}{30} \verb{doi} \verb 10.1109/COMST.2022.3205643 \endverb \keyw{Blockchains;Anomaly detection;Security;Smart contracts;Privacy;Bitcoin;Tutorials;Blockchain;anomaly detection;fraud detection} \endentry \entry{anomaly_detection_manufacturing}{article}{}{} \name{author}{2}{}{% {{hash=1ffbee09cc200ba21f1a826f4256e01c}{% family={Oh}, familyi={O\bibinitperiod}, given={Dong\bibnamedelima Yul}, giveni={D\bibinitperiod\bibinitdelim Y\bibinitperiod}}}% {{hash=29a8e533a9a6689003901c7602759633}{% family={Yun}, familyi={Y\bibinitperiod}, given={Il\bibnamedelima Dong}, giveni={I\bibinitperiod\bibinitdelim D\bibinitperiod}}}% } \strng{namehash}{bf3e65517c83031101472d5e51a8a362} \strng{fullhash}{bf3e65517c83031101472d5e51a8a362} \strng{fullhashraw}{bf3e65517c83031101472d5e51a8a362} \strng{bibnamehash}{bf3e65517c83031101472d5e51a8a362} \strng{authorbibnamehash}{bf3e65517c83031101472d5e51a8a362} \strng{authornamehash}{bf3e65517c83031101472d5e51a8a362} \strng{authorfullhash}{bf3e65517c83031101472d5e51a8a362} \strng{authorfullhashraw}{bf3e65517c83031101472d5e51a8a362} \field{sortinit}{4} \field{sortinithash}{9381316451d1b9788675a07e972a12a7} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{Detecting an anomaly or an abnormal situation from given noise is highly useful in an environment where constantly verifying and monitoring a machine is required. As deep learning algorithms are further developed, current studies have focused on this problem. However, there are too many variables to define anomalies, and the human annotation for a large collection of abnormal data labeled at the class-level is very labor-intensive. In this paper, we propose to detect abnormal operation sounds or outliers in a very complex machine along with reducing the data-driven annotation cost. The architecture of the proposed model is based on an auto-encoder, and it uses the residual error, which stands for its reconstruction quality, to identify the anomaly. We assess our model using Surface-Mounted Device (SMD) machine sound, which is very complex, as experimental data, and state-of-the-art performance is successfully achieved for anomaly detection.} \field{issn}{1424-8220} \field{journaltitle}{Sensors} \field{number}{5} \field{title}{Residual Error Based Anomaly Detection Using Auto-Encoder in SMD Machine Sound} \field{volume}{18} \field{year}{2018} \verb{doi} \verb 10.3390/s18051308 \endverb \verb{urlraw} \verb https://www.mdpi.com/1424-8220/18/5/1308 \endverb \verb{url} \verb https://www.mdpi.com/1424-8220/18/5/1308 \endverb \endentry \entry{anomaly_detection_survey}{article}{}{} \name{author}{3}{}{% {{hash=818074037ed2f89ce51237af38dec11f}{% family={Chandola}, familyi={C\bibinitperiod}, given={Varun}, giveni={V\bibinitperiod}}}% {{hash=4ddb7b9c38d8c15a70bc573ba4e51ea9}{% family={Banerjee}, familyi={B\bibinitperiod}, given={Arindam}, giveni={A\bibinitperiod}}}% {{hash=efb90d78e35ff61d3bc639f5c6f3d822}{% family={Kumar}, familyi={K\bibinitperiod}, given={Vipin}, giveni={V\bibinitperiod}}}% } \list{location}{1}{% {New York, NY, USA}% } \list{publisher}{1}{% {Association for Computing Machinery}% } \strng{namehash}{3843f6427d6ca01b54e95297405107bb} \strng{fullhash}{135c55bbecd240d054a5541e3cf77609} \strng{fullhashraw}{135c55bbecd240d054a5541e3cf77609} \strng{bibnamehash}{135c55bbecd240d054a5541e3cf77609} \strng{authorbibnamehash}{135c55bbecd240d054a5541e3cf77609} \strng{authornamehash}{3843f6427d6ca01b54e95297405107bb} \strng{authorfullhash}{135c55bbecd240d054a5541e3cf77609} \strng{authorfullhashraw}{135c55bbecd240d054a5541e3cf77609} \field{sortinit}{5} \field{sortinithash}{20e9b4b0b173788c5dace24730f47d8c} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{Anomaly detection is an important problem that has been researched within diverse research areas and application domains. Many anomaly detection techniques have been specifically developed for certain application domains, while others are more generic. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection. We have grouped existing techniques into different categories based on the underlying approach adopted by each technique. For each category we have identified key assumptions, which are used by the techniques to differentiate between normal and anomalous behavior. When applying a given technique to a particular domain, these assumptions can be used as guidelines to assess the effectiveness of the technique in that domain. For each category, we provide a basic anomaly detection technique, and then show how the different existing techniques in that category are variants of the basic technique. This template provides an easier and more succinct understanding of the techniques belonging to each category. Further, for each category, we identify the advantages and disadvantages of the techniques in that category. We also provide a discussion on the computational complexity of the techniques since it is an important issue in real application domains. We hope that this survey will provide a better understanding of the different directions in which research has been done on this topic, and how techniques developed in one area can be applied in domains for which they were not intended to begin with.} \field{issn}{0360-0300} \field{journaltitle}{ACM Comput. Surv.} \field{month}{7} \field{number}{3} \field{title}{Anomaly detection: A survey} \field{volume}{41} \field{year}{2009} \verb{doi} \verb 10.1145/1541880.1541882 \endverb \verb{urlraw} \verb https://doi.org/10.1145/1541880.1541882 \endverb \verb{url} \verb https://doi.org/10.1145/1541880.1541882 \endverb \keyw{outlier detection,Anomaly detection} \endentry \entry{deepsad}{article}{}{} \name{author}{7}{}{% {{hash=002c037bd5c44a3c55a7523254ff0522}{% family={Ruff}, familyi={R\bibinitperiod}, given={Lukas}, giveni={L\bibinitperiod}}}% {{hash=e1b687cefe38cff11ee17bf85ec432bf}{% family={Vandermeulen}, familyi={V\bibinitperiod}, given={Robert\bibnamedelima A.}, giveni={R\bibinitperiod\bibinitdelim A\bibinitperiod}}}% {{hash=e60873d1fb72d202998e88ebab9a6903}{% family={Görnitz}, familyi={G\bibinitperiod}, given={Nico}, giveni={N\bibinitperiod}}}% {{hash=d122a2a87d21da4007f460564975e967}{% family={Binder}, familyi={B\bibinitperiod}, given={Alexander}, giveni={A\bibinitperiod}}}% {{hash=d2949700f8a8fdee1e69d478901c51d7}{% family={Müller}, familyi={M\bibinitperiod}, given={Emmanuel}, giveni={E\bibinitperiod}}}% {{hash=9f1b6144a45b1967e989e74552e37ada}{% family={M{ü\bibnamedelimb }ller}, familyi={M\bibinitperiod}, given={Klaus{-}Robert}, giveni={K\bibinitperiod}}}% {{hash=5f7a97296025f5dcf9ed79d67caa64fc}{% family={Kloft}, familyi={K\bibinitperiod}, given={Marius}, giveni={M\bibinitperiod}}}% } \strng{namehash}{f49556d617d4a5ffe2baa6d71026cde2} \strng{fullhash}{b6771072ca1bb3c6a1aad2b4043727e6} \strng{fullhashraw}{b6771072ca1bb3c6a1aad2b4043727e6} \strng{bibnamehash}{b6771072ca1bb3c6a1aad2b4043727e6} \strng{authorbibnamehash}{b6771072ca1bb3c6a1aad2b4043727e6} \strng{authornamehash}{f49556d617d4a5ffe2baa6d71026cde2} \strng{authorfullhash}{b6771072ca1bb3c6a1aad2b4043727e6} \strng{authorfullhashraw}{b6771072ca1bb3c6a1aad2b4043727e6} \field{extraname}{1} \field{sortinit}{8} \field{sortinithash}{a231b008ebf0ecbe0b4d96dcc159445f} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{eprinttype}{arXiv} \field{journaltitle}{CoRR} \field{title}{Deep Semi-Supervised Anomaly Detection} \field{volume}{abs/1906.02694} \field{year}{2019} \verb{eprint} \verb 1906.02694 \endverb \verb{urlraw} \verb http://arxiv.org/abs/1906.02694 \endverb \verb{url} \verb http://arxiv.org/abs/1906.02694 \endverb \endentry \entry{bg_ad_pointclouds_scans}{inproceedings}{}{} \name{author}{2}{}{% {{hash=a3eb3e20ba90926cc2bea3b942ebff5a}{% family={Bergmann}, familyi={B\bibinitperiod}, given={Paul}, giveni={P\bibinitperiod}}}% {{hash=1dd00bcff7e32bdddd6c7dc86fcc3181}{% family={Sattlegger}, familyi={S\bibinitperiod}, given={David}, giveni={D\bibinitperiod}}}% } \list{publisher}{1}{% {IEEE}% } \strng{namehash}{71f9eb33f6ed8400aad69e70b73e38ac} \strng{fullhash}{71f9eb33f6ed8400aad69e70b73e38ac} \strng{fullhashraw}{71f9eb33f6ed8400aad69e70b73e38ac} \strng{bibnamehash}{71f9eb33f6ed8400aad69e70b73e38ac} \strng{authorbibnamehash}{71f9eb33f6ed8400aad69e70b73e38ac} \strng{authornamehash}{71f9eb33f6ed8400aad69e70b73e38ac} \strng{authorfullhash}{71f9eb33f6ed8400aad69e70b73e38ac} \strng{authorfullhashraw}{71f9eb33f6ed8400aad69e70b73e38ac} \field{sortinit}{1} \field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{booktitle}{2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)} \field{month}{1} \field{title}{Anomaly Detection in 3D Point Clouds using Deep Geometric Descriptors} \field{year}{2023} \field{pages}{2612\bibrangedash 2622} \range{pages}{11} \verb{doi} \verb 10.1109/wacv56688.2023.00264 \endverb \verb{urlraw} \verb http://dx.doi.org/10.1109/WACV56688.2023.00264 \endverb \verb{url} \verb http://dx.doi.org/10.1109/WACV56688.2023.00264 \endverb \endentry \entry{bg_ad_pointclouds_poles}{article}{}{} \name{author}{4}{}{% {{hash=bcea81ba124629641c8279b01afc62b7}{% family={Rodríguez-Cuenca}, familyi={R\bibinithyphendelim C\bibinitperiod}, given={Borja}, giveni={B\bibinitperiod}}}% {{hash=2a4ce13d8e7b87661f93d60aff7492bc}{% family={García-Cortés}, familyi={G\bibinithyphendelim C\bibinitperiod}, given={Silverio}, giveni={S\bibinitperiod}}}% {{hash=19a4e1bfea49cb537b042b8a0ef80abc}{% family={Ordóñez}, familyi={O\bibinitperiod}, given={Celestino}, giveni={C\bibinitperiod}}}% {{hash=683a9327f1d11c18983f87e7dbb2653b}{% family={Alonso}, familyi={A\bibinitperiod}, given={Maria}, giveni={M\bibinitperiod}}}% } \list{publisher}{1}{% {MDPI AG}% } \strng{namehash}{93fb240b506f2cdd17153c5f2ce782ff} \strng{fullhash}{2a29cfdad6e7ad0ad1bf7d7aa0bcaddc} \strng{fullhashraw}{2a29cfdad6e7ad0ad1bf7d7aa0bcaddc} \strng{bibnamehash}{2a29cfdad6e7ad0ad1bf7d7aa0bcaddc} \strng{authorbibnamehash}{2a29cfdad6e7ad0ad1bf7d7aa0bcaddc} \strng{authornamehash}{93fb240b506f2cdd17153c5f2ce782ff} \strng{authorfullhash}{2a29cfdad6e7ad0ad1bf7d7aa0bcaddc} \strng{authorfullhashraw}{2a29cfdad6e7ad0ad1bf7d7aa0bcaddc} \field{sortinit}{1} \field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{issn}{2072-4292} \field{journaltitle}{Remote Sensing} \field{month}{9} \field{number}{10} \field{title}{Automatic Detection and Classification of Pole-Like Objects in Urban Point Cloud Data Using an Anomaly Detection Algorithm} \field{volume}{7} \field{year}{2015} \field{pages}{12680\bibrangedash 12703} \range{pages}{24} \verb{doi} \verb 10.3390/rs71012680 \endverb \verb{urlraw} \verb http://dx.doi.org/10.3390/rs71012680 \endverb \verb{url} \verb http://dx.doi.org/10.3390/rs71012680 \endverb \endentry \entry{machine_learning_first_definition}{article}{}{} \name{author}{1}{}{% {{hash=a34c1ec201fc249b01c996cf319ea383}{% family={Samuel}, familyi={S\bibinitperiod}, given={A.\bibnamedelimi L.}, giveni={A\bibinitperiod\bibinitdelim L\bibinitperiod}}}% } \list{publisher}{1}{% {IBM}% } \strng{namehash}{a34c1ec201fc249b01c996cf319ea383} \strng{fullhash}{a34c1ec201fc249b01c996cf319ea383} \strng{fullhashraw}{a34c1ec201fc249b01c996cf319ea383} \strng{bibnamehash}{a34c1ec201fc249b01c996cf319ea383} \strng{authorbibnamehash}{a34c1ec201fc249b01c996cf319ea383} \strng{authornamehash}{a34c1ec201fc249b01c996cf319ea383} \strng{authorfullhash}{a34c1ec201fc249b01c996cf319ea383} \strng{authorfullhashraw}{a34c1ec201fc249b01c996cf319ea383} \field{sortinit}{1} \field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{issn}{0018-8646} \field{journaltitle}{IBM Journal of Research and Development} \field{month}{7} \field{number}{3} \field{title}{Some Studies in Machine Learning Using the Game of Checkers} \field{volume}{3} \field{year}{1959} \field{pages}{210\bibrangedash 229} \range{pages}{20} \verb{doi} \verb 10.1147/rd.33.0210 \endverb \verb{urlraw} \verb http://dx.doi.org/10.1147/rd.33.0210 \endverb \verb{url} \verb http://dx.doi.org/10.1147/rd.33.0210 \endverb \endentry \entry{semi_ad_survey}{article}{}{} \name{author}{6}{}{% {{hash=587dbe7c422cc77291cc515bbf598cfe}{% family={Villa-Pérez}, familyi={V\bibinithyphendelim P\bibinitperiod}, given={Miryam\bibnamedelima Elizabeth}, giveni={M\bibinitperiod\bibinitdelim E\bibinitperiod}}}% {{hash=3305266b8897ce520325ccc3e34461f3}{% family={Álvarez-Carmona}, familyi={Á\bibinithyphendelim C\bibinitperiod}, given={Miguel\bibnamedelima Á.}, giveni={M\bibinitperiod\bibinitdelim Á\bibinitperiod}}}% {{hash=52f4447015639a3cf2fc2bbf62298ffa}{% family={Loyola-González}, familyi={L\bibinithyphendelim G\bibinitperiod}, given={Octavio}, giveni={O\bibinitperiod}}}% {{hash=0090b7ed63a6382056711c3f95b2b127}{% family={Medina-Pérez}, familyi={M\bibinithyphendelim P\bibinitperiod}, given={Miguel\bibnamedelima Angel}, giveni={M\bibinitperiod\bibinitdelim A\bibinitperiod}}}% {{hash=1a32385dadcd304ff8f825dff182230e}{% family={Velazco-Rossell}, familyi={V\bibinithyphendelim R\bibinitperiod}, given={Juan\bibnamedelima Carlos}, giveni={J\bibinitperiod\bibinitdelim C\bibinitperiod}}}% {{hash=b93f2a310bb2c20e877f1ec4a985c4bd}{% family={Choo}, familyi={C\bibinitperiod}, given={Kim-Kwang\bibnamedelima Raymond}, giveni={K\bibinithyphendelim K\bibinitperiod\bibinitdelim R\bibinitperiod}}}% } \list{publisher}{1}{% {Elsevier BV}% } \strng{namehash}{1f3a901804f6733643aff983bcb44e58} \strng{fullhash}{103d5e118395cff5749e9050a3f9888e} \strng{fullhashraw}{103d5e118395cff5749e9050a3f9888e} \strng{bibnamehash}{103d5e118395cff5749e9050a3f9888e} \strng{authorbibnamehash}{103d5e118395cff5749e9050a3f9888e} \strng{authornamehash}{1f3a901804f6733643aff983bcb44e58} \strng{authorfullhash}{103d5e118395cff5749e9050a3f9888e} \strng{authorfullhashraw}{103d5e118395cff5749e9050a3f9888e} \field{sortinit}{1} \field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{issn}{0950-7051} \field{journaltitle}{Knowledge-Based Systems} \field{month}{4} \field{title}{Semi-supervised anomaly detection algorithms: A comparative summary and future research directions} \field{volume}{218} \field{year}{2021} \field{pages}{106878} \range{pages}{1} \verb{doi} \verb 10.1016/j.knosys.2021.106878 \endverb \verb{urlraw} \verb http://dx.doi.org/10.1016/j.knosys.2021.106878 \endverb \verb{url} \verb http://dx.doi.org/10.1016/j.knosys.2021.106878 \endverb \endentry \entry{bg_autoencoder_ad}{inbook}{}{} \name{author}{4}{}{% {{hash=976ff3d638254bc84287783be910c8ab}{% family={Chen}, familyi={C\bibinitperiod}, given={Jinghui}, giveni={J\bibinitperiod}}}% {{hash=e703428e2138f7279350448f52af3b5e}{% family={Sathe}, familyi={S\bibinitperiod}, given={Saket}, giveni={S\bibinitperiod}}}% {{hash=d21646a18174eae99dcae32060cefefc}{% family={Aggarwal}, familyi={A\bibinitperiod}, given={Charu}, giveni={C\bibinitperiod}}}% {{hash=dc9f3feaf2f53f15dee0ab0b556273ba}{% family={Turaga}, familyi={T\bibinitperiod}, given={Deepak}, giveni={D\bibinitperiod}}}% } \list{publisher}{2}{% {Society for Industrial}% {Applied Mathematics}% } \strng{namehash}{5a02f1dae7725de83d23363f0cb28a7a} \strng{fullhash}{93d83b236516fbec4b1c4285b0904114} \strng{fullhashraw}{93d83b236516fbec4b1c4285b0904114} \strng{bibnamehash}{93d83b236516fbec4b1c4285b0904114} \strng{authorbibnamehash}{93d83b236516fbec4b1c4285b0904114} \strng{authornamehash}{5a02f1dae7725de83d23363f0cb28a7a} \strng{authorfullhash}{93d83b236516fbec4b1c4285b0904114} \strng{authorfullhashraw}{93d83b236516fbec4b1c4285b0904114} \field{sortinit}{1} \field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{booktitle}{Proceedings of the 2017 SIAM International Conference on Data Mining} \field{isbn}{9781611974973} \field{month}{6} \field{title}{Outlier Detection with Autoencoder Ensembles} \field{year}{2017} \field{pages}{90\bibrangedash 98} \range{pages}{9} \verb{doi} \verb 10.1137/1.9781611974973.11 \endverb \verb{urlraw} \verb http://dx.doi.org/10.1137/1.9781611974973.11 \endverb \verb{url} \verb http://dx.doi.org/10.1137/1.9781611974973.11 \endverb \endentry \entry{bg_autoencoder_ad_2}{inproceedings}{}{} \name{author}{7}{}{% {{hash=59f4c2546efd0513dace6da88167a071}{% family={Gong}, familyi={G\bibinitperiod}, given={Dong}, giveni={D\bibinitperiod}}}% {{hash=f54dfc8b833af99804c92edf883f3136}{% family={Liu}, familyi={L\bibinitperiod}, given={Lingqiao}, giveni={L\bibinitperiod}}}% {{hash=7ba39f5e17419c15c22646097c0d36f8}{% family={Le}, familyi={L\bibinitperiod}, given={Vuong}, giveni={V\bibinitperiod}}}% {{hash=a5d5463709561319d41aa17650fe5027}{% family={Saha}, familyi={S\bibinitperiod}, given={Budhaditya}, giveni={B\bibinitperiod}}}% {{hash=e36d7e0f369f839c7693fd07c40a17b4}{% family={Mansour}, familyi={M\bibinitperiod}, given={Moussa\bibnamedelima Reda}, giveni={M\bibinitperiod\bibinitdelim R\bibinitperiod}}}% {{hash=338c6e16c0784a3c3fb45d3b745e11bc}{% family={Venkatesh}, familyi={V\bibinitperiod}, given={Svetha}, giveni={S\bibinitperiod}}}% {{hash=391cf8d44b25428741c620023f018f0a}{% family={Van\bibnamedelimb Den\bibnamedelima Hengel}, familyi={V\bibinitperiod\bibinitdelim D\bibinitperiod\bibinitdelim H\bibinitperiod}, given={Anton}, giveni={A\bibinitperiod}}}% } \list{publisher}{1}{% {IEEE}% } \strng{namehash}{323e5563bff0d526ae6e607daa62c297} \strng{fullhash}{26ef64d9b3261b4327d122e7ff089933} \strng{fullhashraw}{26ef64d9b3261b4327d122e7ff089933} \strng{bibnamehash}{26ef64d9b3261b4327d122e7ff089933} \strng{authorbibnamehash}{26ef64d9b3261b4327d122e7ff089933} \strng{authornamehash}{323e5563bff0d526ae6e607daa62c297} \strng{authorfullhash}{26ef64d9b3261b4327d122e7ff089933} \strng{authorfullhashraw}{26ef64d9b3261b4327d122e7ff089933} \field{sortinit}{1} \field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{booktitle}{2019 IEEE/CVF International Conference on Computer Vision (ICCV)} \field{month}{10} \field{title}{Memorizing Normality to Detect Anomaly: Memory-Augmented Deep Autoencoder for Unsupervised Anomaly Detection} \field{year}{2019} \field{pages}{1705\bibrangedash 1714} \range{pages}{10} \verb{doi} \verb 10.1109/iccv.2019.00179 \endverb \verb{urlraw} \verb http://dx.doi.org/10.1109/ICCV.2019.00179 \endverb \verb{url} \verb http://dx.doi.org/10.1109/ICCV.2019.00179 \endverb \endentry \entry{bg_autoencoder_lidar}{article}{}{} \name{author}{5}{}{% {{hash=d93eb0e1a3ff0211d78dd46272d02f4c}{% family={Nahhas}, familyi={N\bibinitperiod}, given={Faten\bibnamedelima Hamed}, giveni={F\bibinitperiod\bibinitdelim H\bibinitperiod}}}% {{hash=3a9ffc33b960bb9dda9bdd7375b1d01e}{% family={Shafri}, familyi={S\bibinitperiod}, given={Helmi\bibnamedelimb Z.\bibnamedelimi M.}, giveni={H\bibinitperiod\bibinitdelim Z\bibinitperiod\bibinitdelim M\bibinitperiod}}}% {{hash=90a99634fbd43f014a097f4f8a436781}{% family={Sameen}, familyi={S\bibinitperiod}, given={Maher\bibnamedelima Ibrahim}, giveni={M\bibinitperiod\bibinitdelim I\bibinitperiod}}}% {{hash=70c9c55c1cc5f1a8d025d54172241b84}{% family={Pradhan}, familyi={P\bibinitperiod}, given={Biswajeet}, giveni={B\bibinitperiod}}}% {{hash=7954c607fe27a4e709a96609d6e3844f}{% family={Mansor}, familyi={M\bibinitperiod}, given={Shattri}, giveni={S\bibinitperiod}}}% } \list{publisher}{1}{% {Wiley}% } \strng{namehash}{b534a26a806aca7455f07a162822fdaf} \strng{fullhash}{da5d6b093131e9a40ed4dae0007ee019} \strng{fullhashraw}{da5d6b093131e9a40ed4dae0007ee019} \strng{bibnamehash}{da5d6b093131e9a40ed4dae0007ee019} \strng{authorbibnamehash}{da5d6b093131e9a40ed4dae0007ee019} \strng{authornamehash}{b534a26a806aca7455f07a162822fdaf} \strng{authorfullhash}{da5d6b093131e9a40ed4dae0007ee019} \strng{authorfullhashraw}{da5d6b093131e9a40ed4dae0007ee019} \field{sortinit}{2} \field{sortinithash}{8b555b3791beccb63322c22f3320aa9a} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{issn}{1687-7268} \field{journaltitle}{Journal of Sensors} \field{month}{8} \field{title}{Deep Learning Approach for Building Detection Using LiDAR–Orthophoto Fusion} \field{volume}{2018} \field{year}{2018} \field{pages}{1\bibrangedash 12} \range{pages}{12} \verb{doi} \verb 10.1155/2018/7212307 \endverb \verb{urlraw} \verb http://dx.doi.org/10.1155/2018/7212307 \endverb \verb{url} \verb http://dx.doi.org/10.1155/2018/7212307 \endverb \endentry \entry{lidar_denoising_survey}{article}{}{} \name{author}{4}{}{% {{hash=30663aad72dc59a49b7023f9c332b58a}{% family={Park}, familyi={P\bibinitperiod}, given={Ji-Il}, giveni={J\bibinithyphendelim I\bibinitperiod}}}% {{hash=a06f107889bac3f9c5c69e8ec33d0b43}{% family={Jo}, familyi={J\bibinitperiod}, given={SeungHyeon}, giveni={S\bibinitperiod}}}% {{hash=fec644aa8c277ebe521ffd2b99fd5e55}{% family={Seo}, familyi={S\bibinitperiod}, given={Hyung-Tae}, giveni={H\bibinithyphendelim T\bibinitperiod}}}% {{hash=6c6a9781b73c633cd808e5bfa12a3e20}{% family={Park}, familyi={P\bibinitperiod}, given={Jihyuk}, giveni={J\bibinitperiod}}}% } \list{publisher}{2}{% {Institute of Electrical}% {Electronics Engineers (IEEE)}% } \strng{namehash}{04b1af8a561822bd2336140b9c47f5ed} \strng{fullhash}{e7818c2cd27c283d60a3963ba626342b} \strng{fullhashraw}{e7818c2cd27c283d60a3963ba626342b} \strng{bibnamehash}{e7818c2cd27c283d60a3963ba626342b} \strng{authorbibnamehash}{e7818c2cd27c283d60a3963ba626342b} \strng{authornamehash}{04b1af8a561822bd2336140b9c47f5ed} \strng{authorfullhash}{e7818c2cd27c283d60a3963ba626342b} \strng{authorfullhashraw}{e7818c2cd27c283d60a3963ba626342b} \field{sortinit}{2} \field{sortinithash}{8b555b3791beccb63322c22f3320aa9a} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{issn}{2379-9153} \field{journaltitle}{IEEE Sensors Journal} \field{month}{3} \field{number}{5} \field{title}{LiDAR Denoising Methods in Adverse Environments: A Review} \field{volume}{25} \field{year}{2025} \field{pages}{7916\bibrangedash 7932} \range{pages}{17} \verb{doi} \verb 10.1109/jsen.2025.3526175 \endverb \verb{urlraw} \verb http://dx.doi.org/10.1109/JSEN.2025.3526175 \endverb \verb{url} \verb http://dx.doi.org/10.1109/JSEN.2025.3526175 \endverb \endentry \entry{lidar_denoising_dust}{article}{}{} \name{author}{6}{}{% {{hash=fd576f034b91a62d29f03df9da9db992}{% family={Parsons}, familyi={P\bibinitperiod}, given={Tyler}, giveni={T\bibinitperiod}}}% {{hash=2bc3b0d9dd8c0ef94ed53c523a2ac77e}{% family={Seo}, familyi={S\bibinitperiod}, given={Jaho}, giveni={J\bibinitperiod}}}% {{hash=9b2bb1ea6133add720a57edc20fa5a88}{% family={Kim}, familyi={K\bibinitperiod}, given={Byeongjin}, giveni={B\bibinitperiod}}}% {{hash=9ede25cf22f479791ec3f64748846ab7}{% family={Lee}, familyi={L\bibinitperiod}, given={Hanmin}, giveni={H\bibinitperiod}}}% {{hash=4b4fa2a1e4a4a2056878d801e4e8869c}{% family={Kim}, familyi={K\bibinitperiod}, given={Ji-Chul}, giveni={J\bibinithyphendelim C\bibinitperiod}}}% {{hash=661f29594a38997b15de75a053d73f26}{% family={Cha}, familyi={C\bibinitperiod}, given={Moohyun}, giveni={M\bibinitperiod}}}% } \list{publisher}{2}{% {Institute of Electrical}% {Electronics Engineers (IEEE)}% } \strng{namehash}{0a27e8ca9417e034303de05677d255d7} \strng{fullhash}{c25daf229a4778975b71dde19e2ed0c8} \strng{fullhashraw}{c25daf229a4778975b71dde19e2ed0c8} \strng{bibnamehash}{c25daf229a4778975b71dde19e2ed0c8} \strng{authorbibnamehash}{c25daf229a4778975b71dde19e2ed0c8} \strng{authornamehash}{0a27e8ca9417e034303de05677d255d7} \strng{authorfullhash}{c25daf229a4778975b71dde19e2ed0c8} \strng{authorfullhashraw}{c25daf229a4778975b71dde19e2ed0c8} \field{sortinit}{2} \field{sortinithash}{8b555b3791beccb63322c22f3320aa9a} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{issn}{2169-3536} \field{journaltitle}{IEEE Access} \field{title}{Dust De-Filtering in LiDAR Applications With Conventional and CNN Filtering Methods} \field{volume}{12} \field{year}{2024} \field{pages}{22032\bibrangedash 22042} \range{pages}{11} \verb{doi} \verb 10.1109/access.2024.3362804 \endverb \verb{urlraw} \verb http://dx.doi.org/10.1109/ACCESS.2024.3362804 \endverb \verb{url} \verb http://dx.doi.org/10.1109/ACCESS.2024.3362804 \endverb \endentry \entry{lidar_subt_dust_removal}{inproceedings}{}{} \name{author}{3}{}{% {{hash=699c7e7b2aa48d270962a2be61e2388d}{% family={Kyuroson}, familyi={K\bibinitperiod}, given={Alexander}, giveni={A\bibinitperiod}}}% {{hash=4653a3758b96f51b4faaefd18f19fddc}{% family={Koval}, familyi={K\bibinitperiod}, given={Anton}, giveni={A\bibinitperiod}}}% {{hash=3afc59e5614c23cce7afb1fdb69736a4}{% family={Nikolakopoulos}, familyi={N\bibinitperiod}, given={George}, giveni={G\bibinitperiod}}}% } \list{publisher}{1}{% {IEEE}% } \strng{namehash}{5c7062df7d1eff242c1f462ca88a1ec4} \strng{fullhash}{f7ac305c57bc05cdd9d7b32cd2c70620} \strng{fullhashraw}{f7ac305c57bc05cdd9d7b32cd2c70620} \strng{bibnamehash}{f7ac305c57bc05cdd9d7b32cd2c70620} \strng{authorbibnamehash}{f7ac305c57bc05cdd9d7b32cd2c70620} \strng{authornamehash}{5c7062df7d1eff242c1f462ca88a1ec4} \strng{authorfullhash}{f7ac305c57bc05cdd9d7b32cd2c70620} \strng{authorfullhashraw}{f7ac305c57bc05cdd9d7b32cd2c70620} \field{extraname}{1} \field{sortinit}{2} \field{sortinithash}{8b555b3791beccb63322c22f3320aa9a} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{booktitle}{IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society} \field{month}{10} \field{title}{Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue with Autonomous Heterogeneous Robotic Systems} \field{year}{2023} \field{pages}{1\bibrangedash 7} \range{pages}{7} \verb{doi} \verb 10.1109/iecon51785.2023.10312303 \endverb \verb{urlraw} \verb http://dx.doi.org/10.1109/IECON51785.2023.10312303 \endverb \verb{url} \verb http://dx.doi.org/10.1109/IECON51785.2023.10312303 \endverb \endentry \entry{degradation_quantification_rain}{inproceedings}{}{} \name{author}{4}{}{% {{hash=c9191dc69bc22ce41fc456ae9eb63db8}{% family={Zhang}, familyi={Z\bibinitperiod}, given={Chen}, giveni={C\bibinitperiod}}}% {{hash=27e82f2fa7a8aeab31d23e96281c4216}{% family={Huang}, familyi={H\bibinitperiod}, given={Zefan}, giveni={Z\bibinitperiod}}}% {{hash=8853b4c458b10805206bff7ae6cae182}{% family={Ang}, familyi={A\bibinitperiod}, given={Marcelo\bibnamedelima H.}, giveni={M\bibinitperiod\bibinitdelim H\bibinitperiod}}}% {{hash=f74192f92945701041a41bfa429ee111}{% family={Rus}, familyi={R\bibinitperiod}, given={Daniela}, giveni={D\bibinitperiod}}}% } \strng{namehash}{2348f5826634af872a0634ea83f5916a} \strng{fullhash}{6bbe9b21a1058838c2696c645e510766} \strng{fullhashraw}{6bbe9b21a1058838c2696c645e510766} \strng{bibnamehash}{6bbe9b21a1058838c2696c645e510766} \strng{authorbibnamehash}{6bbe9b21a1058838c2696c645e510766} \strng{authornamehash}{2348f5826634af872a0634ea83f5916a} \strng{authorfullhash}{6bbe9b21a1058838c2696c645e510766} \strng{authorfullhashraw}{6bbe9b21a1058838c2696c645e510766} \field{sortinit}{2} \field{sortinithash}{8b555b3791beccb63322c22f3320aa9a} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{booktitle}{2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)} \field{title}{LiDAR Degradation Quantification for Autonomous Driving in Rain} \field{year}{2021} \field{pages}{3458\bibrangedash 3464} \range{pages}{7} \verb{doi} \verb 10.1109/IROS51168.2021.9636694 \endverb \keyw{Degradation;Location awareness;Laser radar;Rain;Codes;System performance;Current measurement} \endentry \entry{deepsvdd}{inproceedings}{}{} \name{author}{8}{}{% {{hash=002c037bd5c44a3c55a7523254ff0522}{% family={Ruff}, familyi={R\bibinitperiod}, given={Lukas}, giveni={L\bibinitperiod}}}% {{hash=1e584159c8f4d32a1e55772b4b798844}{% family={Vandermeulen}, familyi={V\bibinitperiod}, given={Robert}, giveni={R\bibinitperiod}}}% {{hash=d225927675f1b50ada7afdcd7141a590}{% family={Goernitz}, familyi={G\bibinitperiod}, given={Nico}, giveni={N\bibinitperiod}}}% {{hash=99c57c6d6c2549166bb9eb10bd8357a9}{% family={Deecke}, familyi={D\bibinitperiod}, given={Lucas}, giveni={L\bibinitperiod}}}% {{hash=74815873173614768c79b41ebcd30fb7}{% family={Siddiqui}, familyi={S\bibinitperiod}, given={Shoaib\bibnamedelima Ahmed}, giveni={S\bibinitperiod\bibinitdelim A\bibinitperiod}}}% {{hash=d122a2a87d21da4007f460564975e967}{% family={Binder}, familyi={B\bibinitperiod}, given={Alexander}, giveni={A\bibinitperiod}}}% {{hash=d2949700f8a8fdee1e69d478901c51d7}{% family={Müller}, familyi={M\bibinitperiod}, given={Emmanuel}, giveni={E\bibinitperiod}}}% {{hash=5f7a97296025f5dcf9ed79d67caa64fc}{% family={Kloft}, familyi={K\bibinitperiod}, given={Marius}, giveni={M\bibinitperiod}}}% } \name{editor}{2}{}{% {{hash=dc770b9b0d58d3008bbb3906497d898c}{% family={Dy}, familyi={D\bibinitperiod}, given={Jennifer}, giveni={J\bibinitperiod}}}% {{hash=112eb0b147c4a7f674d015a86e5dea70}{% family={Krause}, familyi={K\bibinitperiod}, given={Andreas}, giveni={A\bibinitperiod}}}% } \list{publisher}{1}{% {PMLR}% } \strng{namehash}{f49556d617d4a5ffe2baa6d71026cde2} \strng{fullhash}{dcbeae0afbfe40f33a90739e660c9b68} \strng{fullhashraw}{dcbeae0afbfe40f33a90739e660c9b68} \strng{bibnamehash}{dcbeae0afbfe40f33a90739e660c9b68} \strng{authorbibnamehash}{dcbeae0afbfe40f33a90739e660c9b68} \strng{authornamehash}{f49556d617d4a5ffe2baa6d71026cde2} \strng{authorfullhash}{dcbeae0afbfe40f33a90739e660c9b68} \strng{authorfullhashraw}{dcbeae0afbfe40f33a90739e660c9b68} \strng{editorbibnamehash}{83be554d58af5be1788b5c3616f0e92a} \strng{editornamehash}{83be554d58af5be1788b5c3616f0e92a} \strng{editorfullhash}{83be554d58af5be1788b5c3616f0e92a} \strng{editorfullhashraw}{83be554d58af5be1788b5c3616f0e92a} \field{extraname}{2} \field{sortinit}{4} \field{sortinithash}{9381316451d1b9788675a07e972a12a7} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{Despite the great advances made by deep learning in many machine learning problems, there is a relative dearth of deep learning approaches for anomaly detection. Those approaches which do exist involve networks trained to perform a task other than anomaly detection, namely generative models or compression, which are in turn adapted for use in anomaly detection; they are not trained on an anomaly detection based objective. In this paper we introduce a new anomaly detection method—Deep Support Vector Data Description—, which is trained on an anomaly detection based objective. The adaptation to the deep regime necessitates that our neural network and training procedure satisfy certain properties, which we demonstrate theoretically. We show the effectiveness of our method on MNIST and CIFAR-10 image benchmark datasets as well as on the detection of adversarial examples of GTSRB stop signs.} \field{booktitle}{Proceedings of the 35th International Conference on Machine Learning} \field{month}{10--15 Jul} \field{series}{Proceedings of Machine Learning Research} \field{title}{Deep One-Class Classification} \field{volume}{80} \field{year}{2018} \field{pages}{4393\bibrangedash 4402} \range{pages}{10} \verb{file} \verb http://proceedings.mlr.press/v80/ruff18a/ruff18a.pdf \endverb \verb{urlraw} \verb https://proceedings.mlr.press/v80/ruff18a.html \endverb \verb{url} \verb https://proceedings.mlr.press/v80/ruff18a.html \endverb \endentry \entry{lidar_errormodel_particles}{inproceedings}{}{} \name{author}{4}{}{% {{hash=5e35bb636f146553847f059f1d9b0112}{% family={Mokrane}, familyi={M\bibinitperiod}, given={Hadj-Bachir}, giveni={H\bibinithyphendelim B\bibinitperiod}}}% {{hash=b93bdf1725cd92f53ba0a8d65ad6a2e1}{% family={De\bibnamedelima Souza}, familyi={D\bibinitperiod\bibinitdelim S\bibinitperiod}, given={Philippe}, giveni={P\bibinitperiod}}}% {{hash=ab9d159b4d21e1827708013a631a117c}{% family={Nordqvist}, familyi={N\bibinitperiod}, given={P}, giveni={P\bibinitperiod}}}% {{hash=8a2a61074171157d9ec8fff3d24a68ca}{% family={Roy}, familyi={R\bibinitperiod}, given={N}, giveni={N\bibinitperiod}}}% } \strng{namehash}{e9af9fcd8483f077f0dcdbd95213a56e} \strng{fullhash}{8179a2c222d1565711a7f216e4da6e56} \strng{fullhashraw}{8179a2c222d1565711a7f216e4da6e56} \strng{bibnamehash}{8179a2c222d1565711a7f216e4da6e56} \strng{authorbibnamehash}{8179a2c222d1565711a7f216e4da6e56} \strng{authornamehash}{e9af9fcd8483f077f0dcdbd95213a56e} \strng{authorfullhash}{8179a2c222d1565711a7f216e4da6e56} \strng{authorfullhashraw}{8179a2c222d1565711a7f216e4da6e56} \field{sortinit}{4} \field{sortinithash}{9381316451d1b9788675a07e972a12a7} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{month}{05} \field{title}{Modelling of LIDAR sensor disturbances by solid airborne particles} \field{year}{2021} \endentry \entry{lidar_errormodel_automotive}{article}{}{} \name{author}{4}{}{% {{hash=543e42a23bf0e82160327f61e8bd39fd}{% family={Matos}, familyi={M\bibinitperiod}, given={Francisco}, giveni={F\bibinitperiod}}}% {{hash=251db60f77d96aa82892e32418380cf1}{% family={Bernardino}, familyi={B\bibinitperiod}, given={Jorge}, giveni={J\bibinitperiod}}}% {{hash=d64a76ce853c38d61da2622b489b82a7}{% family={Durães}, familyi={D\bibinitperiod}, given={João}, giveni={J\bibinitperiod}}}% {{hash=7d3ca6503262f25170cf99b2d8149c47}{% family={Cunha}, familyi={C\bibinitperiod}, given={João}, giveni={J\bibinitperiod}}}% } \list{publisher}{1}{% {MDPI AG}% } \strng{namehash}{01a32420f9995c8592740c3ad622e775} \strng{fullhash}{c0310d5b84b91b546714624d9baf92c2} \strng{fullhashraw}{c0310d5b84b91b546714624d9baf92c2} \strng{bibnamehash}{c0310d5b84b91b546714624d9baf92c2} \strng{authorbibnamehash}{c0310d5b84b91b546714624d9baf92c2} \strng{authornamehash}{01a32420f9995c8592740c3ad622e775} \strng{authorfullhash}{c0310d5b84b91b546714624d9baf92c2} \strng{authorfullhashraw}{c0310d5b84b91b546714624d9baf92c2} \field{sortinit}{4} \field{sortinithash}{9381316451d1b9788675a07e972a12a7} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{issn}{1424-8220} \field{journaltitle}{Sensors} \field{month}{8} \field{number}{16} \field{title}{A Survey on Sensor Failures in Autonomous Vehicles: Challenges and Solutions} \field{volume}{24} \field{year}{2024} \field{pages}{5108} \range{pages}{1} \verb{doi} \verb 10.3390/s24165108 \endverb \verb{urlraw} \verb http://dx.doi.org/10.3390/s24165108 \endverb \verb{url} \verb http://dx.doi.org/10.3390/s24165108 \endverb \endentry \entry{lidar_errormodel_consensus}{article}{}{} \name{author}{31}{}{% {{hash=06d189c2f568e4d1074a2b57535e462b}{% family={Ebadi}, familyi={E\bibinitperiod}, given={Kamak}, giveni={K\bibinitperiod}}}% {{hash=145ba6752bdeff853575063c31f7d7bf}{% family={Bernreiter}, familyi={B\bibinitperiod}, given={Lukas}, giveni={L\bibinitperiod}}}% {{hash=e9aa55b84ad4a013f1035dfa00065ac5}{% family={Biggie}, familyi={B\bibinitperiod}, given={Harel}, giveni={H\bibinitperiod}}}% {{hash=682713075736094d30f5bedc34b4db7f}{% family={Catt}, familyi={C\bibinitperiod}, given={Gavin}, giveni={G\bibinitperiod}}}% {{hash=10f98f99a9c111b003f3799142a50c0e}{% family={Chang}, familyi={C\bibinitperiod}, given={Yun}, giveni={Y\bibinitperiod}}}% {{hash=a7e3dbbd10e6728756f76ac20d309904}{% family={Chatterjee}, familyi={C\bibinitperiod}, given={Arghya}, giveni={A\bibinitperiod}}}% {{hash=8813777dbf2a3f5cb799dcd5362b862d}{% family={Denniston}, familyi={D\bibinitperiod}, given={Christopher\bibnamedelima E.}, giveni={C\bibinitperiod\bibinitdelim E\bibinitperiod}}}% {{hash=7e3a7e9cb822ee50a156703cedacde6f}{% family={Deschênes}, familyi={D\bibinitperiod}, given={Simon-Pierre}, giveni={S\bibinithyphendelim P\bibinitperiod}}}% {{hash=bdcde1ae39604cf4133da69eee243465}{% family={Harlow}, familyi={H\bibinitperiod}, given={Kyle}, giveni={K\bibinitperiod}}}% {{hash=a366bd6f7d23477c863b29df74f2ab06}{% family={Khattak}, familyi={K\bibinitperiod}, given={Shehryar}, giveni={S\bibinitperiod}}}% {{hash=541b7790dd552933a1065e34fb5a1468}{% family={Nogueira}, familyi={N\bibinitperiod}, given={Lucas}, giveni={L\bibinitperiod}}}% {{hash=bcdc721aecdc714b5c3cd61330d7a0b1}{% family={Palieri}, familyi={P\bibinitperiod}, given={Matteo}, giveni={M\bibinitperiod}}}% {{hash=5b601eff8bb3e4f4d5a83431735a4bd1}{% family={Petráček}, familyi={P\bibinitperiod}, given={Pavel}, giveni={P\bibinitperiod}}}% {{hash=b6bc0850682f6c84782ec95b79745703}{% family={Petrlík}, familyi={P\bibinitperiod}, given={Matěj}, giveni={M\bibinitperiod}}}% {{hash=d055343547cebb4e54954ed519e801c4}{% family={Reinke}, familyi={R\bibinitperiod}, given={Andrzej}, giveni={A\bibinitperiod}}}% {{hash=dd5ac189b964fce7c5f2a7b97afb076e}{% family={Krátký}, familyi={K\bibinitperiod}, given={Vít}, giveni={V\bibinitperiod}}}% {{hash=d4c59486f10c241b510cc970f1739c18}{% family={Zhao}, familyi={Z\bibinitperiod}, given={Shibo}, giveni={S\bibinitperiod}}}% {{hash=6ed5efddc9f3e49781cb4c64ae6135f7}{% family={Agha-mohammadi}, familyi={A\bibinithyphendelim m\bibinitperiod}, given={Ali-akbar}, giveni={A\bibinithyphendelim a\bibinitperiod}}}% {{hash=607eea23552518c3e54a04a592995738}{% family={Alexis}, familyi={A\bibinitperiod}, given={Kostas}, giveni={K\bibinitperiod}}}% {{hash=4c2db6d696666ecaec22d073deb3cb7d}{% family={Heckman}, familyi={H\bibinitperiod}, given={Christoffer}, giveni={C\bibinitperiod}}}% {{hash=72d107e363b8f1f9a3f41b195a5de03e}{% family={Khosoussi}, familyi={K\bibinitperiod}, given={Kasra}, giveni={K\bibinitperiod}}}% {{hash=8ec4a1465c2b87599b51eda8e26a8075}{% family={Kottege}, familyi={K\bibinitperiod}, given={Navinda}, giveni={N\bibinitperiod}}}% {{hash=54c89cefd5f9f95260e9c50ba84a0fda}{% family={Morrell}, familyi={M\bibinitperiod}, given={Benjamin}, giveni={B\bibinitperiod}}}% {{hash=164607f9daa616a03bed0e2bf6531a8d}{% family={Hutter}, familyi={H\bibinitperiod}, given={Marco}, giveni={M\bibinitperiod}}}% {{hash=b0afdad4d1c793f3255ce2f55ac4c846}{% family={Pauling}, familyi={P\bibinitperiod}, given={Fred}, giveni={F\bibinitperiod}}}% {{hash=f220f9566be4f464ab62f74f22203b54}{% family={Pomerleau}, familyi={P\bibinitperiod}, given={Franç\bibnamedelima ois}, giveni={F\bibinitperiod\bibinitdelim o\bibinitperiod}}}% {{hash=bf219f96a5ef126a473bacf7e7ce5aa2}{% family={Saska}, familyi={S\bibinitperiod}, given={Martin}, giveni={M\bibinitperiod}}}% {{hash=ad26bf16eeaee427e8e36bea35587822}{% family={Scherer}, familyi={S\bibinitperiod}, given={Sebastian}, giveni={S\bibinitperiod}}}% {{hash=6ee8958bbf32527489012d8ca7c95ee3}{% family={Siegwart}, familyi={S\bibinitperiod}, given={Roland}, giveni={R\bibinitperiod}}}% {{hash=0ec53a07aa8c1dfdf9a98691b0db5fad}{% family={Williams}, familyi={W\bibinitperiod}, given={Jason\bibnamedelima L.}, giveni={J\bibinitperiod\bibinitdelim L\bibinitperiod}}}% {{hash=09ed5bfe663f495a0cb6828e722b7919}{% family={Carlone}, familyi={C\bibinitperiod}, given={Luca}, giveni={L\bibinitperiod}}}% } \list{publisher}{2}{% {Institute of Electrical}% {Electronics Engineers (IEEE)}% } \strng{namehash}{1eed07a9c59db157d86a149850002efb} \strng{fullhash}{5cd0fc84a08d52373df410079c09015c} \strng{fullhashraw}{5cd0fc84a08d52373df410079c09015c} \strng{bibnamehash}{5cd0fc84a08d52373df410079c09015c} \strng{authorbibnamehash}{5cd0fc84a08d52373df410079c09015c} \strng{authornamehash}{1eed07a9c59db157d86a149850002efb} \strng{authorfullhash}{5cd0fc84a08d52373df410079c09015c} \strng{authorfullhashraw}{5cd0fc84a08d52373df410079c09015c} \field{sortinit}{5} \field{sortinithash}{20e9b4b0b173788c5dace24730f47d8c} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{issn}{1941-0468} \field{journaltitle}{IEEE Transactions on Robotics} \field{title}{Present and Future of SLAM in Extreme Environments: The DARPA SubT Challenge} \field{volume}{40} \field{year}{2024} \field{pages}{936\bibrangedash 959} \range{pages}{24} \verb{doi} \verb 10.1109/tro.2023.3323938 \endverb \verb{urlraw} \verb http://dx.doi.org/10.1109/TRO.2023.3323938 \endverb \verb{url} \verb http://dx.doi.org/10.1109/TRO.2023.3323938 \endverb \endentry \entry{subter}{inproceedings}{}{} \name{author}{6}{}{% {{hash=699c7e7b2aa48d270962a2be61e2388d}{% family={Kyuroson}, familyi={K\bibinitperiod}, given={Alexander}, giveni={A\bibinitperiod}}}% {{hash=dcc31f346f6377570e08482ac6a5f5b1}{% family={Dahlquist}, familyi={D\bibinitperiod}, given={Niklas}, giveni={N\bibinitperiod}}}% {{hash=4486f9b7bc85156158f19982b79deb2c}{% family={Stathoulopoulos}, familyi={S\bibinitperiod}, given={Nikolaos}, giveni={N\bibinitperiod}}}% {{hash=af1a6542a89fbc4fa8f3c87be523c948}{% family={Viswanathan}, familyi={V\bibinitperiod}, given={Vignesh\bibnamedelima Kottayam}, giveni={V\bibinitperiod\bibinitdelim K\bibinitperiod}}}% {{hash=4653a3758b96f51b4faaefd18f19fddc}{% family={Koval}, familyi={K\bibinitperiod}, given={Anton}, giveni={A\bibinitperiod}}}% {{hash=3afc59e5614c23cce7afb1fdb69736a4}{% family={Nikolakopoulos}, familyi={N\bibinitperiod}, given={George}, giveni={G\bibinitperiod}}}% } \list{publisher}{1}{% {IEEE}% } \strng{namehash}{5c7062df7d1eff242c1f462ca88a1ec4} \strng{fullhash}{31c8cde264eb0da1d45f468f719f7a54} \strng{fullhashraw}{31c8cde264eb0da1d45f468f719f7a54} \strng{bibnamehash}{31c8cde264eb0da1d45f468f719f7a54} \strng{authorbibnamehash}{31c8cde264eb0da1d45f468f719f7a54} \strng{authornamehash}{5c7062df7d1eff242c1f462ca88a1ec4} \strng{authorfullhash}{31c8cde264eb0da1d45f468f719f7a54} \strng{authorfullhashraw}{31c8cde264eb0da1d45f468f719f7a54} \field{extraname}{2} \field{sortinit}{5} \field{sortinithash}{20e9b4b0b173788c5dace24730f47d8c} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{booktitle}{2023 31st Mediterranean Conference on Control and Automation (MED)} \field{month}{6} \field{title}{Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol Particles for Frontier Exploration} \field{year}{2023} \field{pages}{716\bibrangedash 721} \range{pages}{6} \verb{doi} \verb 10.1109/med59994.2023.10185906 \endverb \verb{urlraw} \verb http://dx.doi.org/10.1109/MED59994.2023.10185906 \endverb \verb{url} \verb http://dx.doi.org/10.1109/MED59994.2023.10185906 \endverb \endentry \entry{when_the_dust_settles}{article}{}{} \name{author}{3}{}{% {{hash=b92844b965ac018520bb62944085a532}{% family={Phillips}, familyi={P\bibinitperiod}, given={Tyson\bibnamedelima Govan}, giveni={T\bibinitperiod\bibinitdelim G\bibinitperiod}}}% {{hash=3840698203ecb652a558e9bd3be727d1}{% family={Guenther}, familyi={G\bibinitperiod}, given={Nicky}, giveni={N\bibinitperiod}}}% {{hash=d97943d6b25de471ca93f524c43c5f71}{% family={McAree}, familyi={M\bibinitperiod}, given={Peter\bibnamedelima Ross}, giveni={P\bibinitperiod\bibinitdelim R\bibinitperiod}}}% } \list{publisher}{1}{% {Wiley}% } \strng{namehash}{ea684bebf6033a20ad34a33644ec89fc} \strng{fullhash}{d6ad1c32e8f7738554f79d65d954b4f9} \strng{fullhashraw}{d6ad1c32e8f7738554f79d65d954b4f9} \strng{bibnamehash}{d6ad1c32e8f7738554f79d65d954b4f9} \strng{authorbibnamehash}{d6ad1c32e8f7738554f79d65d954b4f9} \strng{authornamehash}{ea684bebf6033a20ad34a33644ec89fc} \strng{authorfullhash}{d6ad1c32e8f7738554f79d65d954b4f9} \strng{authorfullhashraw}{d6ad1c32e8f7738554f79d65d954b4f9} \field{sortinit}{5} \field{sortinithash}{20e9b4b0b173788c5dace24730f47d8c} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{issn}{1556-4967} \field{journaltitle}{Journal of Field Robotics} \field{month}{2} \field{number}{5} \field{title}{When the Dust Settles: The Four Behaviors of LiDAR in the Presence of Fine Airborne Particulates} \field{volume}{34} \field{year}{2017} \field{pages}{985\bibrangedash 1009} \range{pages}{25} \verb{doi} \verb 10.1002/rob.21701 \endverb \verb{urlraw} \verb http://dx.doi.org/10.1002/rob.21701 \endverb \verb{url} \verb http://dx.doi.org/10.1002/rob.21701 \endverb \endentry \entry{autoencoder_survey}{article}{}{} \name{author}{3}{}{% {{hash=865ddf165610b06eb5784a1f62b7f5b1}{% family={Li}, familyi={L\bibinitperiod}, given={Pengzhi}, giveni={P\bibinitperiod}}}% {{hash=9cac1198da571303982f7d7587dddc36}{% family={Pei}, familyi={P\bibinitperiod}, given={Yan}, giveni={Y\bibinitperiod}}}% {{hash=044e3ce31698740e52346ad0aadea689}{% family={Li}, familyi={L\bibinitperiod}, given={Jianqiang}, giveni={J\bibinitperiod}}}% } \strng{namehash}{5e0b9f9cab8ce61be5266767752c12dc} \strng{fullhash}{d932d7249aa0617596765b2fc72a8152} \strng{fullhashraw}{d932d7249aa0617596765b2fc72a8152} \strng{bibnamehash}{d932d7249aa0617596765b2fc72a8152} \strng{authorbibnamehash}{d932d7249aa0617596765b2fc72a8152} \strng{authornamehash}{5e0b9f9cab8ce61be5266767752c12dc} \strng{authorfullhash}{d932d7249aa0617596765b2fc72a8152} \strng{authorfullhashraw}{d932d7249aa0617596765b2fc72a8152} \field{sortinit}{6} \field{sortinithash}{b33bc299efb3c36abec520a4c896a66d} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{Autoencoder is an unsupervised learning model, which can automatically learn data features from a large number of samples and can act as a dimensionality reduction method. With the development of deep learning technology, autoencoder has attracted the attention of many scholars. Researchers have proposed several improved versions of autoencoder based on different application fields. First, this paper explains the principle of a conventional autoencoder and investigates the primary development process of an autoencoder. Second, We proposed a taxonomy of autoencoders according to their structures and principles. The related autoencoder models are comprehensively analyzed and discussed. This paper introduces the application progress of autoencoders in different fields, such as image classification and natural language processing, etc. Finally, the shortcomings of the current autoencoder algorithm are summarized, and prospected for its future development directions are addressed.} \field{issn}{1568-4946} \field{journaltitle}{Applied Soft Computing} \field{title}{A comprehensive survey on design and application of autoencoder in deep learning} \field{volume}{138} \field{year}{2023} \field{pages}{110176} \range{pages}{1} \verb{doi} \verb https://doi.org/10.1016/j.asoc.2023.110176 \endverb \verb{urlraw} \verb https://www.sciencedirect.com/science/article/pii/S1568494623001941 \endverb \verb{url} \verb https://www.sciencedirect.com/science/article/pii/S1568494623001941 \endverb \keyw{Deep learning,Autoencoder,Unsupervised learning,Feature extraction,Autoencoder application} \endentry \entry{odds}{misc}{}{} \name{author}{1}{}{% {{hash=c4d64624ede10e1baa66843e963d7c13}{% family={Rayana}, familyi={R\bibinitperiod}, given={Shebuti}, giveni={S\bibinitperiod}}}% } \list{institution}{1}{% {Stony Brook University, Department of Computer Sciences}% } \strng{namehash}{c4d64624ede10e1baa66843e963d7c13} \strng{fullhash}{c4d64624ede10e1baa66843e963d7c13} \strng{fullhashraw}{c4d64624ede10e1baa66843e963d7c13} \strng{bibnamehash}{c4d64624ede10e1baa66843e963d7c13} \strng{authorbibnamehash}{c4d64624ede10e1baa66843e963d7c13} \strng{authornamehash}{c4d64624ede10e1baa66843e963d7c13} \strng{authorfullhash}{c4d64624ede10e1baa66843e963d7c13} \strng{authorfullhashraw}{c4d64624ede10e1baa66843e963d7c13} \field{sortinit}{6} \field{sortinithash}{b33bc299efb3c36abec520a4c896a66d} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{title}{ODDS Library} \field{year}{2016} \verb{urlraw} \verb https://odds.cs.stonybrook.edu \endverb \verb{url} \verb https://odds.cs.stonybrook.edu \endverb \endentry \enddatalist \endrefsection \endinput