Files
mt/Deep-SAD-PyTorch/src/baseline_kde.py
2024-06-28 11:36:46 +02:00

313 lines
9.7 KiB
Python

import click
import torch
import logging
import random
import numpy as np
from utils.config import Config
from utils.visualization.plot_images_grid import plot_images_grid
from baselines.kde import KDE
from datasets.main import load_dataset
################################################################################
# Settings
################################################################################
@click.command()
@click.argument(
"dataset_name",
type=click.Choice(
[
"mnist",
"fmnist",
"cifar10",
"arrhythmia",
"cardio",
"satellite",
"satimage-2",
"shuttle",
"thyroid",
]
),
)
@click.argument("xp_path", type=click.Path(exists=True))
@click.argument("data_path", type=click.Path(exists=True))
@click.option(
"--load_config",
type=click.Path(exists=True),
default=None,
help="Config JSON-file path (default: None).",
)
@click.option(
"--load_model",
type=click.Path(exists=True),
default=None,
help="Model file path (default: None).",
)
@click.option(
"--ratio_known_normal",
type=float,
default=0.0,
help="Ratio of known (labeled) normal training examples.",
)
@click.option(
"--ratio_known_outlier",
type=float,
default=0.0,
help="Ratio of known (labeled) anomalous training examples.",
)
@click.option(
"--ratio_pollution",
type=float,
default=0.0,
help="Pollution ratio of unlabeled training data with unknown (unlabeled) anomalies.",
)
@click.option(
"--seed", type=int, default=-1, help="Set seed. If -1, use randomization."
)
@click.option(
"--kernel",
type=click.Choice(
["gaussian", "tophat", "epanechnikov", "exponential", "linear", "cosine"]
),
default="gaussian",
help="Kernel for the KDE",
)
@click.option(
"--grid_search_cv",
type=bool,
default=True,
help="Use sklearn GridSearchCV to determine optimal bandwidth",
)
@click.option(
"--n_jobs_model", type=int, default=-1, help="Number of jobs for model training."
)
@click.option(
"--hybrid",
type=bool,
default=False,
help="Train KDE on features extracted from an autoencoder. If True, load_ae must be specified.",
)
@click.option(
"--load_ae",
type=click.Path(exists=True),
default=None,
help="Model file path to load autoencoder weights (default: None).",
)
@click.option(
"--n_jobs_dataloader",
type=int,
default=0,
help="Number of workers for data loading. 0 means that the data will be loaded in the main process.",
)
@click.option(
"--normal_class",
type=int,
default=0,
help="Specify the normal class of the dataset (all other classes are considered anomalous).",
)
@click.option(
"--known_outlier_class",
type=int,
default=1,
help="Specify the known outlier class of the dataset for semi-supervised anomaly detection.",
)
@click.option(
"--n_known_outlier_classes",
type=int,
default=0,
help="Number of known outlier classes."
"If 0, no anomalies are known."
"If 1, outlier class as specified in --known_outlier_class option."
"If > 1, the specified number of outlier classes will be sampled at random.",
)
def main(
dataset_name,
xp_path,
data_path,
load_config,
load_model,
ratio_known_normal,
ratio_known_outlier,
ratio_pollution,
seed,
kernel,
grid_search_cv,
n_jobs_model,
hybrid,
load_ae,
n_jobs_dataloader,
normal_class,
known_outlier_class,
n_known_outlier_classes,
):
"""
(Hybrid) KDE for anomaly detection.
:arg DATASET_NAME: Name of the dataset to load.
:arg XP_PATH: Export path for logging the experiment.
:arg DATA_PATH: Root path of data.
"""
# Get configuration
cfg = Config(locals().copy())
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger()
logger.setLevel(logging.INFO)
formatter = logging.Formatter(
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
log_file = xp_path + "/log.txt"
file_handler = logging.FileHandler(log_file)
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
# Print paths
logger.info("Log file is %s." % log_file)
logger.info("Data path is %s." % data_path)
logger.info("Export path is %s." % xp_path)
# Print experimental setup
logger.info("Dataset: %s" % dataset_name)
logger.info("Normal class: %d" % normal_class)
logger.info("Ratio of labeled normal train samples: %.2f" % ratio_known_normal)
logger.info("Ratio of labeled anomalous samples: %.2f" % ratio_known_outlier)
logger.info("Pollution ratio of unlabeled train data: %.2f" % ratio_pollution)
if n_known_outlier_classes == 1:
logger.info("Known anomaly class: %d" % known_outlier_class)
else:
logger.info("Number of known anomaly classes: %d" % n_known_outlier_classes)
# If specified, load experiment config from JSON-file
if load_config:
cfg.load_config(import_json=load_config)
logger.info("Loaded configuration from %s." % load_config)
# Print KDE configuration
logger.info("KDE kernel: %s" % cfg.settings["kernel"])
logger.info(
"Use GridSearchCV for bandwidth selection: %s" % cfg.settings["grid_search_cv"]
)
logger.info("Number of jobs for model training: %d" % n_jobs_model)
logger.info("Hybrid model: %s" % cfg.settings["hybrid"])
# Set seed
if cfg.settings["seed"] != -1:
random.seed(cfg.settings["seed"])
np.random.seed(cfg.settings["seed"])
torch.manual_seed(cfg.settings["seed"])
torch.cuda.manual_seed(cfg.settings["seed"])
torch.backends.cudnn.deterministic = True
logger.info("Set seed to %d." % cfg.settings["seed"])
# Use 'cpu' as device for KDE
device = "cpu"
torch.multiprocessing.set_sharing_strategy(
"file_system"
) # fix multiprocessing issue for ubuntu
logger.info("Computation device: %s" % device)
logger.info("Number of dataloader workers: %d" % n_jobs_dataloader)
# Load data
dataset = load_dataset(
dataset_name,
data_path,
normal_class,
known_outlier_class,
n_known_outlier_classes,
ratio_known_normal,
ratio_known_outlier,
ratio_pollution,
random_state=np.random.RandomState(cfg.settings["seed"]),
)
# Log random sample of known anomaly classes if more than 1 class
if n_known_outlier_classes > 1:
logger.info("Known anomaly classes: %s" % (dataset.known_outlier_classes,))
# Initialize KDE model
kde = KDE(
hybrid=cfg.settings["hybrid"],
kernel=cfg.settings["kernel"],
n_jobs=n_jobs_model,
seed=cfg.settings["seed"],
)
# If specified, load model parameters from already trained model
if load_model:
kde.load_model(import_path=load_model, device=device)
logger.info("Loading model from %s." % load_model)
# If specified, load model autoencoder weights for a hybrid approach
if hybrid and load_ae is not None:
kde.load_ae(dataset_name, model_path=load_ae)
logger.info("Loaded pretrained autoencoder for features from %s." % load_ae)
# Train model on dataset
kde.train(
dataset,
device=device,
n_jobs_dataloader=n_jobs_dataloader,
bandwidth_GridSearchCV=cfg.settings["grid_search_cv"],
)
# Test model
kde.test(dataset, device=device, n_jobs_dataloader=n_jobs_dataloader)
# Save results and configuration
kde.save_results(export_json=xp_path + "/results.json")
cfg.save_config(export_json=xp_path + "/config.json")
# Plot most anomalous and most normal test samples
indices, labels, scores = zip(*kde.results["test_scores"])
indices, labels, scores = np.array(indices), np.array(labels), np.array(scores)
idx_all_sorted = indices[np.argsort(scores)] # from lowest to highest score
idx_normal_sorted = indices[labels == 0][
np.argsort(scores[labels == 0])
] # from lowest to highest score
if dataset_name in ("mnist", "fmnist", "cifar10"):
if dataset_name in ("mnist", "fmnist"):
X_all_low = dataset.test_set.data[idx_all_sorted[:32], ...].unsqueeze(1)
X_all_high = dataset.test_set.data[idx_all_sorted[-32:], ...].unsqueeze(1)
X_normal_low = dataset.test_set.data[idx_normal_sorted[:32], ...].unsqueeze(
1
)
X_normal_high = dataset.test_set.data[
idx_normal_sorted[-32:], ...
].unsqueeze(1)
if dataset_name == "cifar10":
X_all_low = torch.tensor(
np.transpose(
dataset.test_set.data[idx_all_sorted[:32], ...], (0, 3, 1, 2)
)
)
X_all_high = torch.tensor(
np.transpose(
dataset.test_set.data[idx_all_sorted[-32:], ...], (0, 3, 1, 2)
)
)
X_normal_low = torch.tensor(
np.transpose(
dataset.test_set.data[idx_normal_sorted[:32], ...], (0, 3, 1, 2)
)
)
X_normal_high = torch.tensor(
np.transpose(
dataset.test_set.data[idx_normal_sorted[-32:], ...], (0, 3, 1, 2)
)
)
plot_images_grid(X_all_low, export_img=xp_path + "/all_low", padding=2)
plot_images_grid(X_all_high, export_img=xp_path + "/all_high", padding=2)
plot_images_grid(X_normal_low, export_img=xp_path + "/normals_low", padding=2)
plot_images_grid(X_normal_high, export_img=xp_path + "/normals_high", padding=2)
if __name__ == "__main__":
main()