Files
mt/Deep-SAD-PyTorch/src/base/base_dataset.py
2024-06-28 11:36:46 +02:00

36 lines
1.1 KiB
Python

from abc import ABC, abstractmethod
from torch.utils.data import DataLoader
class BaseADDataset(ABC):
"""Anomaly detection dataset base class."""
def __init__(self, root: str):
super().__init__()
self.root = root # root path to data
self.n_classes = 2 # 0: normal, 1: outlier
self.normal_classes = (
None # tuple with original class labels that define the normal class
)
self.outlier_classes = (
None # tuple with original class labels that define the outlier class
)
self.train_set = None # must be of type torch.utils.data.Dataset
self.test_set = None # must be of type torch.utils.data.Dataset
@abstractmethod
def loaders(
self,
batch_size: int,
shuffle_train=True,
shuffle_test=False,
num_workers: int = 0,
) -> (DataLoader, DataLoader):
"""Implement data loaders of type torch.utils.data.DataLoader for train_set and test_set."""
pass
def __repr__(self):
return self.__class__.__name__