Files
mt/Deep-SAD-PyTorch/src/networks/layers/stochastic.py
2024-06-28 07:42:12 +02:00

54 lines
1.4 KiB
Python

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
# Acknowledgements: https://github.com/wohlert/semi-supervised-pytorch
class Stochastic(nn.Module):
"""
Base stochastic layer that uses the reparametrization trick (Kingma and Welling, 2013) to draw a sample from a
distribution parametrized by mu and log_var.
"""
def __init__(self):
super(Stochastic, self).__init__()
def reparametrize(self, mu, log_var):
epsilon = Variable(torch.randn(mu.size()), requires_grad=False)
if mu.is_cuda:
epsilon = epsilon.to(mu.device)
# log_std = 0.5 * log_var
# std = exp(log_std)
std = log_var.mul(0.5).exp_()
# z = std * epsilon + mu
z = mu.addcmul(std, epsilon)
return z
def forward(self, x):
raise NotImplementedError
class GaussianSample(Stochastic):
"""
Layer that represents a sample from a Gaussian distribution.
"""
def __init__(self, in_features, out_features):
super(GaussianSample, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.mu = nn.Linear(in_features, out_features)
self.log_var = nn.Linear(in_features, out_features)
def forward(self, x):
mu = self.mu(x)
log_var = F.softplus(self.log_var(x))
return self.reparametrize(mu, log_var), mu, log_var