Files
mt/Deep-SAD-PyTorch/src/utils/misc.py
2024-06-28 11:36:46 +02:00

49 lines
1.4 KiB
Python

import torch
from torch.autograd import Variable
# Acknowledgements: https://github.com/wohlert/semi-supervised-pytorch
def enumerate_discrete(x, y_dim):
"""
Generates a 'torch.Tensor' of size batch_size x n_labels of the given label.
:param x: tensor with batch size to mimic
:param y_dim: number of total labels
:return variable
"""
def batch(batch_size, label):
labels = (torch.ones(batch_size, 1) * label).type(torch.LongTensor)
y = torch.zeros((batch_size, y_dim))
y.scatter_(1, labels, 1)
return y.type(torch.LongTensor)
batch_size = x.size(0)
generated = torch.cat([batch(batch_size, i) for i in range(y_dim)])
if x.is_cuda:
generated = generated.to(x.device)
return Variable(generated.float())
def log_sum_exp(tensor, dim=-1, sum_op=torch.sum):
"""
Uses the LogSumExp (LSE) as an approximation for the sum in a log-domain.
:param tensor: Tensor to compute LSE over
:param dim: dimension to perform operation over
:param sum_op: reductive operation to be applied, e.g. torch.sum or torch.mean
:return: LSE
"""
max, _ = torch.max(tensor, dim=dim, keepdim=True)
return (
torch.log(sum_op(torch.exp(tensor - max), dim=dim, keepdim=True) + 1e-8) + max
)
def binary_cross_entropy(x, y):
eps = 1e-8
return -torch.sum(y * torch.log(x + eps) + (1 - y) * torch.log(1 - x + eps), dim=-1)