Files
mt/tools/render2d.py
Jan Kowalczyk d33c6b1e16 fixed sparse rings in lidar
if all datapoints in one ring were missing we would have a shape
mismatch for that data so we have to fill the sparse data out in
the index axis too
2024-06-28 11:18:04 +02:00

378 lines
12 KiB
Python

from configargparse import (
ArgParser,
YAMLConfigFileParser,
ArgumentDefaultsRawHelpFormatter,
)
from sys import exit
from pathlib import Path
from pointcloudset import Dataset
from rich.progress import track
from pandas import DataFrame
from PIL import Image
from math import pi
from typing import Optional
import matplotlib
import numpy as np
matplotlib.use("Agg")
import matplotlib.pyplot as plt
from util import (
angle,
angle_width,
positive_int,
load_dataset,
existing_path,
create_video_from_images,
calculate_average_frame_rate,
get_colormap_with_special_missing_color,
)
def crop_lidar_data_to_roi(
data: DataFrame,
roi_angle_start: float,
roi_angle_width: float,
horizontal_resolution: int,
) -> tuple[DataFrame, int]:
if roi_angle_width == 360:
return data, horizontal_resolution
roi_index_start = int(horizontal_resolution / 360 * roi_angle_start)
roi_index_width = int(horizontal_resolution / 360 * roi_angle_width)
roi_index_end = roi_index_start + roi_index_width
if roi_index_end < horizontal_resolution:
cropped_data = data.iloc[:, roi_index_start:roi_index_end]
else:
roi_index_end = roi_index_end - horizontal_resolution
cropped_data = data.iloc[:, roi_index_end:roi_index_start]
return cropped_data, roi_index_width
def create_2d_projection(
df: DataFrame,
output_file_path: Path,
tmp_file_path: Path,
colormap_name: str,
missing_data_color: str,
reverse_colormap: bool,
horizontal_resolution: int,
vertical_resolution: int,
):
fig, ax = plt.subplots(
figsize=(float(horizontal_resolution) / 100, float(vertical_resolution) / 100)
)
ax.imshow(
df,
cmap=get_colormap_with_special_missing_color(
colormap_name, missing_data_color, reverse_colormap
),
aspect="auto",
)
ax.axis("off")
fig.subplots_adjust(left=0, right=1, top=1, bottom=0)
plt.savefig(tmp_file_path, dpi=100, bbox_inches="tight", pad_inches=0)
plt.close()
img = Image.open(tmp_file_path)
img_resized = img.resize(
(horizontal_resolution, vertical_resolution), Image.LANCZOS
)
img_resized.save(output_file_path)
tmp_file_path.unlink()
def create_projection_data(
dataset: Dataset,
output_path: Path,
colormap_name: str,
missing_data_color: str,
reverse_colormap: bool,
horizontal_resolution: int,
vertical_scale: int,
horizontal_scale: int,
roi_angle_start: float,
roi_angle_width: float,
render_images: bool,
) -> (np.ndarray, Optional[list[Path]]):
rendered_images = []
converted_lidar_frames = []
for i, pc in track(
enumerate(dataset, 1), description="Creating projections...", total=len(dataset)
):
vertical_resolution = int(pc.data["ring"].max() + 1)
# Angle calculation implementation
# projected_data = pc.data.copy()
# projected_data["arctan"] = np.arctan2(projected_data["y"], projected_data["x"])
# projected_data["arctan_normalized"] = 0.5 * (projected_data["arctan"] / pi + 1.0)
# projected_data["arctan_scaled"] = projected_data["arctan_normalized"] * horizontal_resolution
# #projected_data["horizontal_position"] = np.floor(projected_data["arctan_scaled"])
# projected_data["horizontal_position"] = np.round(projected_data["arctan_scaled"])
# projected_data["normalized_range"] = 1 / np.sqrt(
# projected_data["x"] ** 2 + projected_data["y"] ** 2 + projected_data["z"] ** 2
# )
# duplicates = projected_data[projected_data.duplicated(subset=['ring', 'horizontal_position'], keep=False)].sort_values(by=['ring', 'horizontal_position'])
# sorted = projected_data.sort_values(by=['ring', 'horizontal_position'])
# FIXME: following pivot fails due to duplicates in the data, some points (x, y) are mapped to the same pixel in the projection, have to decide how to handles
# these cases
# projected_image_data = projected_data.pivot(
# index="ring", columns="horizontal_position", values="normalized_range"
# )
# projected_image_data = projected_image_data.reindex(columns=range(horizontal_resolution), fill_value=0)
# projected_image_data, output_horizontal_resolution = crop_lidar_data_to_roi(
# projected_image_data, roi_angle_start, roi_angle_width, horizontal_resolution
# )
# create_2d_projection(
# projected_image_data,
# output_path / f"frame_{i:04d}_projection.png",
# output_path / "tmp.png",
# colormap_name,
# missing_data_color,
# reverse_colormap,
# horizontal_resolution=output_horizontal_resolution * horizontal_scale,
# vertical_resolution=vertical_resolution * vertical_scale,
# )
lidar_data = pc.data.copy()
lidar_data["horizontal_position"] = (
lidar_data["original_id"] % horizontal_resolution
)
lidar_data["normalized_range"] = 1 / np.sqrt(
lidar_data["x"] ** 2 + lidar_data["y"] ** 2 + lidar_data["z"] ** 2
)
lidar_data = lidar_data.pivot(
index="ring", columns="horizontal_position", values="normalized_range"
)
lidar_data = lidar_data.reindex(
columns=range(horizontal_resolution), fill_value=0
)
lidar_data = lidar_data.reindex(index=range(vertical_resolution), fill_value=0)
lidar_data, output_horizontal_resolution = crop_lidar_data_to_roi(
lidar_data, roi_angle_start, roi_angle_width, horizontal_resolution
)
converted_lidar_frames.append(lidar_data.to_numpy())
if render_images:
image_path = create_2d_projection(
lidar_data,
output_path / f"frame_{i:04d}.png",
output_path / "tmp.png",
colormap_name,
missing_data_color,
reverse_colormap,
horizontal_resolution=output_horizontal_resolution * horizontal_scale,
vertical_resolution=vertical_resolution * vertical_scale,
)
rendered_images.append(image_path)
projection_data = np.stack(converted_lidar_frames, axis=0)
if render_images:
return rendered_images, projection_data
else:
return projection_data
def main() -> int:
parser = ArgParser(
config_file_parser_class=YAMLConfigFileParser,
default_config_files=["render2d_config.yaml"],
formatter_class=ArgumentDefaultsRawHelpFormatter,
description="Render a 2d projection of a point cloud",
)
parser.add_argument(
"--render-config-file", is_config_file=True, help="yaml config file path"
)
parser.add_argument(
"--input-experiment-path",
required=True,
type=existing_path,
help="path to experiment. (directly to bag file, to parent folder for mcap)",
)
parser.add_argument(
"--pointcloud-topic",
default="/ouster/points",
type=str,
help="topic in the ros/mcap bag file containing the point cloud data",
)
parser.add_argument(
"--output-path",
default=Path("./output"),
type=Path,
help="path rendered frames should be written to",
)
parser.add_argument(
"--output-no-images",
action="store_true",
help="do not create individual image files for the projection frames",
)
parser.add_argument(
"--output-no-video",
action="store_true",
help="do not create a video file from the projection frames",
)
parser.add_argument(
"--output-no-numpy",
action="store_true",
help="do not create a numpy file with the projection data",
)
parser.add_argument(
"--force-generation",
action="store_true",
help="if used will force the generation even if output already exists",
)
parser.add_argument(
"--colormap-name",
default="viridis",
type=str,
help="name of matplotlib colormap to be used",
)
parser.add_argument(
"--missing-data-color",
default="black",
type=str,
help="name of color to be used for missing data",
)
parser.add_argument(
"--reverse-colormap",
default=True,
type=bool,
help="if colormap should be reversed",
)
parser.add_argument(
"--horizontal-resolution",
default=2048,
type=positive_int,
help="number of horizontal lidar data points",
)
parser.add_argument(
"--vertical-scale",
default=1,
type=positive_int,
help="multiplier for vertical scale, for better visualization",
)
parser.add_argument(
"--horizontal-scale",
default=1,
type=positive_int,
help="multiplier for horizontal scale, for better visualization",
)
parser.add_argument(
"--roi-angle-start",
default=0,
type=angle,
help="angle where roi starts",
)
parser.add_argument(
"--roi-angle-width",
default=360,
type=angle_width,
help="width of roi in degrees",
)
args = parser.parse_args()
output_path = args.output_path / args.input_experiment_path.stem
output_path.mkdir(parents=True, exist_ok=True)
parser.write_config_file(
parser.parse_known_args()[0],
output_file_paths=[(output_path / "config.yaml").as_posix()],
)
# Create temporary folder for images, if outputting images we use the output folder itself as temp folder
tmp_path = output_path / "tmp" if args.output_no_images else output_path / "frames"
tmp_path.mkdir(parents=True, exist_ok=True)
dataset = load_dataset(args.input_experiment_path, args.pointcloud_topic)
images = []
if not args.output_no_images or not args.output_no_video:
if not args.force_generation and all(
(tmp_path / f"frame_{i:04d}.png").exists()
for i in range(1, len(dataset) + 1)
):
print(
f"Skipping image generation for {args.input_experiment_path} as all frames already exist"
)
else:
projection_data, images = create_projection_data(
dataset,
tmp_path,
args.colormap_name,
args.missing_data_color,
args.reverse_colormap,
args.horizontal_resolution,
args.vertical_scale,
args.horizontal_scale,
args.roi_angle_start,
args.roi_angle_width,
render_images=True,
)
output_numpy_path = (output_path / args.input_experiment_path.stem).with_suffix(
".npy"
)
if not args.output_no_numpy:
if not args.force_generation and output_numpy_path.exists():
print(
f"Skipping numpy file generation for {args.input_experiment_path} as {output_numpy_path} already exists"
)
else:
if args.output_no_images:
projection_data, _ = create_projection_data(
dataset,
tmp_path,
args.colormap_name,
args.missing_data_color,
args.reverse_colormap,
args.horizontal_resolution,
args.vertical_scale,
args.horizontal_scale,
args.roi_angle_start,
args.roi_angle_width,
render_images=False,
)
# processed_range_data.dump(output_numpy_path)
np.save(output_numpy_path, projection_data, fix_imports=False)
if not args.output_no_video:
if (
not args.force_generation
and (output_path / args.input_experiment_path.stem)
.with_suffix(".mp4")
.exists()
):
print(
f"Skipping video generation for {args.input_experiment_path} as {output_path / args.input_experiment_path.stem}.mp4 already exists"
)
else:
input_images_pattern = f"{tmp_path}/frame_%04d.png"
create_video_from_images(
input_images_pattern,
(output_path / args.input_experiment_path.stem).with_suffix(".mp4"),
calculate_average_frame_rate(dataset),
)
if args.output_no_images:
for image in images:
image.unlink()
tmp_path.rmdir()
return 0
if __name__ == "__main__":
exit(main())