Files
mt/Deep-SAD-PyTorch/src/base/base_trainer.py
2024-06-28 11:36:46 +02:00

44 lines
1.2 KiB
Python

from abc import ABC, abstractmethod
from .base_dataset import BaseADDataset
from .base_net import BaseNet
class BaseTrainer(ABC):
"""Trainer base class."""
def __init__(
self,
optimizer_name: str,
lr: float,
n_epochs: int,
lr_milestones: tuple,
batch_size: int,
weight_decay: float,
device: str,
n_jobs_dataloader: int,
):
super().__init__()
self.optimizer_name = optimizer_name
self.lr = lr
self.n_epochs = n_epochs
self.lr_milestones = lr_milestones
self.batch_size = batch_size
self.weight_decay = weight_decay
self.device = device
self.n_jobs_dataloader = n_jobs_dataloader
@abstractmethod
def train(self, dataset: BaseADDataset, net: BaseNet) -> BaseNet:
"""
Implement train method that trains the given network using the train_set of dataset.
:return: Trained net
"""
pass
@abstractmethod
def test(self, dataset: BaseADDataset, net: BaseNet):
"""
Implement test method that evaluates the test_set of dataset on the given network.
"""
pass