44 lines
1.2 KiB
Python
44 lines
1.2 KiB
Python
from abc import ABC, abstractmethod
|
|
from .base_dataset import BaseADDataset
|
|
from .base_net import BaseNet
|
|
|
|
|
|
class BaseTrainer(ABC):
|
|
"""Trainer base class."""
|
|
|
|
def __init__(
|
|
self,
|
|
optimizer_name: str,
|
|
lr: float,
|
|
n_epochs: int,
|
|
lr_milestones: tuple,
|
|
batch_size: int,
|
|
weight_decay: float,
|
|
device: str,
|
|
n_jobs_dataloader: int,
|
|
):
|
|
super().__init__()
|
|
self.optimizer_name = optimizer_name
|
|
self.lr = lr
|
|
self.n_epochs = n_epochs
|
|
self.lr_milestones = lr_milestones
|
|
self.batch_size = batch_size
|
|
self.weight_decay = weight_decay
|
|
self.device = device
|
|
self.n_jobs_dataloader = n_jobs_dataloader
|
|
|
|
@abstractmethod
|
|
def train(self, dataset: BaseADDataset, net: BaseNet) -> BaseNet:
|
|
"""
|
|
Implement train method that trains the given network using the train_set of dataset.
|
|
:return: Trained net
|
|
"""
|
|
pass
|
|
|
|
@abstractmethod
|
|
def test(self, dataset: BaseADDataset, net: BaseNet):
|
|
"""
|
|
Implement test method that evaluates the test_set of dataset on the given network.
|
|
"""
|
|
pass
|