Files
mt/tools/load_results.py

652 lines
23 KiB
Python
Raw Normal View History

2025-09-02 16:30:32 +02:00
from __future__ import annotations
import json
import pickle
from pathlib import Path
2025-09-09 14:15:16 +02:00
from typing import Any, Dict, List, Optional, Tuple
2025-09-02 16:30:32 +02:00
import numpy as np
import polars as pl
2025-09-09 14:15:16 +02:00
from polars.testing import assert_frame_equal
from diff_df import recursive_diff_frames
2025-09-02 16:30:32 +02:00
# ------------------------------------------------------------
# Config you can tweak
# ------------------------------------------------------------
MODELS = ["deepsad", "isoforest", "ocsvm"]
EVALS = ["exp_based", "manual_based"]
SCHEMA_STATIC = {
# identifiers / dims
"network": pl.Utf8, # e.g. "LeNet", "efficient"
"latent_dim": pl.Int32,
"semi_normals": pl.Int32,
"semi_anomalous": pl.Int32,
"model": pl.Utf8, # "deepsad" | "isoforest" | "ocsvm"
"eval": pl.Utf8, # "exp_based" | "manual_based"
"fold": pl.Int32,
# metrics
"auc": pl.Float64,
"ap": pl.Float64,
# per-sample scores: list of (idx, label, score)
"scores": pl.List(
pl.Struct(
{
"sample_idx": pl.Int32, # dataloader idx
"orig_label": pl.Int8, # {-1,0,1}
"score": pl.Float64, # anomaly score
}
)
),
# curves (normalized)
"roc_curve": pl.Struct(
{
"fpr": pl.List(pl.Float64),
"tpr": pl.List(pl.Float64),
"thr": pl.List(pl.Float64),
}
),
"prc_curve": pl.Struct(
{
"precision": pl.List(pl.Float64),
"recall": pl.List(pl.Float64),
"thr": pl.List(pl.Float64), # may be len(precision)-1
}
),
# deepsad-only per-eval arrays (None for other models)
"sample_indices": pl.List(pl.Int32),
"sample_labels": pl.List(pl.Int8),
"valid_mask": pl.List(pl.Boolean),
# timings / housekeeping
"train_time": pl.Float64,
"test_time": pl.Float64,
"folder": pl.Utf8,
"k_fold_num": pl.Int32,
"config_json": pl.Utf8, # full config.json as string (for reference)
}
# Pretraining-only (AE) schema
# Pretraining-only (AE) schema — lighter defaults
PRETRAIN_SCHEMA = {
# identifiers / dims
"network": pl.Utf8, # e.g. "LeNet", "efficient"
"latent_dim": pl.Int32,
"semi_normals": pl.Int32,
"semi_anomalous": pl.Int32,
"model": pl.Utf8, # always "ae"
"fold": pl.Int32,
"split": pl.Utf8, # "train" | "test"
# timings and optimization
"time": pl.Float64,
"loss": pl.Float64,
# per-sample arrays (as lists)
"indices": pl.List(pl.Int32),
"labels_exp_based": pl.List(pl.Int32),
"labels_manual_based": pl.List(pl.Int32),
"semi_targets": pl.List(pl.Int32),
"file_ids": pl.List(pl.Int32),
"frame_ids": pl.List(pl.Int32),
"scores": pl.List(pl.Float32), # <— use Float32 to match source and save space
# file id -> name mapping from the result dict
"file_names": pl.List(pl.Struct({"file_id": pl.Int32, "name": pl.Utf8})),
# housekeeping
"folder": pl.Utf8,
"k_fold_num": pl.Int32,
"config_json": pl.Utf8, # full config.json as string (for reference)
2025-09-02 16:30:32 +02:00
}
# ------------------------------------------------------------
# Helpers: curve/scores normalizers (tuples/ndarrays -> dict/list)
# ------------------------------------------------------------
def _tolist(x):
if x is None:
return None
if isinstance(x, np.ndarray):
return x.tolist()
if isinstance(x, (list, tuple)):
return list(x)
# best-effort scalar wrap
try:
return [x]
except Exception:
return None
def normalize_float_list(a) -> Optional[List[float]]:
if a is None:
return None
if isinstance(a, np.ndarray):
a = a.tolist()
return [None if x is None else float(x) for x in a]
def normalize_file_names(d) -> Optional[List[dict]]:
"""
Convert the 'file_names' dict (keys like numpy.int64 -> str) to a
list[ {file_id:int, name:str} ], sorted by file_id.
"""
if not isinstance(d, dict):
return None
out: List[dict] = []
for k, v in d.items():
try:
file_id = int(k)
except Exception:
# keys are printed as np.int64 in the structure; best-effort cast
continue
out.append({"file_id": file_id, "name": str(v)})
out.sort(key=lambda x: x["file_id"])
return out
2025-09-02 16:30:32 +02:00
def normalize_roc(obj: Any) -> Optional[dict]:
if obj is None:
return None
fpr = tpr = thr = None
if isinstance(obj, (tuple, list)):
if len(obj) >= 2:
fpr, tpr = _tolist(obj[0]), _tolist(obj[1])
if len(obj) >= 3:
thr = _tolist(obj[2])
elif isinstance(obj, dict):
fpr = _tolist(obj.get("fpr") or obj.get("x"))
tpr = _tolist(obj.get("tpr") or obj.get("y"))
thr = _tolist(obj.get("thr") or obj.get("thresholds"))
else:
return None
if fpr is None or tpr is None:
return None
return {"fpr": fpr, "tpr": tpr, "thr": thr}
def normalize_prc(obj: Any) -> Optional[dict]:
if obj is None:
return None
precision = recall = thr = None
if isinstance(obj, (tuple, list)):
if len(obj) >= 2:
precision, recall = _tolist(obj[0]), _tolist(obj[1])
if len(obj) >= 3:
thr = _tolist(obj[2])
elif isinstance(obj, dict):
precision = _tolist(obj.get("precision") or obj.get("y"))
recall = _tolist(obj.get("recall") or obj.get("x"))
thr = _tolist(obj.get("thr") or obj.get("thresholds"))
else:
return None
if precision is None or recall is None:
return None
return {"precision": precision, "recall": recall, "thr": thr}
def normalize_scores_to_struct(seq) -> Optional[List[dict]]:
"""
Input: list of (idx, label, score) tuples (as produced in your test()).
Output: list of dicts with keys sample_idx, orig_label, score.
"""
if seq is None:
return None
if isinstance(seq, np.ndarray):
seq = seq.tolist()
if not isinstance(seq, (list, tuple)):
return None
out: List[dict] = []
for item in seq:
if isinstance(item, (list, tuple)) and len(item) >= 3:
idx, lab, sc = item[0], item[1], item[2]
out.append(
{
"sample_idx": None if idx is None else int(idx),
"orig_label": None if lab is None else int(lab),
"score": None if sc is None else float(sc),
}
)
else:
# fallback: single numeric -> score
sc = (
float(item)
if isinstance(item, (int, float, np.integer, np.floating))
else None
)
out.append({"sample_idx": None, "orig_label": None, "score": sc})
return out
def normalize_int_list(a) -> Optional[List[int]]:
if a is None:
return None
if isinstance(a, np.ndarray):
a = a.tolist()
return list(a)
def normalize_bool_list(a) -> Optional[List[bool]]:
if a is None:
return None
if isinstance(a, np.ndarray):
a = a.tolist()
return [bool(x) for x in a]
# ------------------------------------------------------------
# Low-level: read one experiment folder
# ------------------------------------------------------------
def read_config(exp_dir: Path) -> dict:
cfg = exp_dir / "config.json"
with cfg.open("r") as f:
c = json.load(f)
if not c.get("k_fold"):
raise ValueError(f"{exp_dir.name}: not trained as k-fold")
return c
def read_pickle(p: Path) -> Any:
with p.open("rb") as f:
return pickle.load(f)
# ------------------------------------------------------------
# Extractors for each model
# ------------------------------------------------------------
2025-09-09 14:15:16 +02:00
counting = {
(label_method, eval_method): []
for label_method in ["exp_based", "manual_based"]
for eval_method in ["roc", "prc"]
}
2025-09-02 16:30:32 +02:00
def rows_from_deepsad(data: dict, evals: List[str]) -> Dict[str, dict]:
"""
deepsad under data['test'][eval], with extra per-eval arrays and AP present.
"""
out: Dict[str, dict] = {}
test = data.get("test", {})
for ev in evals:
evd = test.get(ev)
if not isinstance(evd, dict):
continue
2025-09-09 14:15:16 +02:00
counting[(ev, "roc")].append(len(evd["roc"][0]))
counting[(ev, "prc")].append(len(evd["prc"][0]))
2025-09-02 16:30:32 +02:00
out[ev] = {
"auc": float(evd["auc"])
if "auc" in evd and evd["auc"] is not None
else None,
"roc": normalize_roc(evd.get("roc")),
"prc": normalize_prc(evd.get("prc")),
"ap": float(evd["ap"]) if "ap" in evd and evd["ap"] is not None else None,
"scores": normalize_scores_to_struct(evd.get("scores")),
"sample_indices": normalize_int_list(evd.get("indices")),
"sample_labels": normalize_int_list(evd.get("labels")),
"valid_mask": normalize_bool_list(evd.get("valid_mask")),
"train_time": data.get("train", {}).get("time"),
"test_time": test.get("time"),
}
return out
def rows_from_isoforest(data: dict, evals: List[str]) -> Dict[str, dict]:
"""
Keys: test_auc_<eval>, test_roc_<eval>, test_prc_<eval>, test_ap_<eval>, test_scores_<eval>.
"""
out: Dict[str, dict] = {}
for ev in evals:
auc = data.get(f"test_auc_{ev}")
if auc is None:
continue
out[ev] = {
"auc": float(auc),
"roc": normalize_roc(data.get(f"test_roc_{ev}")),
"prc": normalize_prc(data.get(f"test_prc_{ev}")),
"ap": float(data.get(f"test_ap_{ev}"))
if data.get(f"test_ap_{ev}") is not None
else None,
"scores": normalize_scores_to_struct(data.get(f"test_scores_{ev}")),
"sample_indices": None,
"sample_labels": None,
"valid_mask": None,
"train_time": data.get("train_time"),
"test_time": data.get("test_time"),
}
return out
def rows_from_ocsvm_default(data: dict, evals: List[str]) -> Dict[str, dict]:
"""
Default OCSVM only (ignore linear variant entirely).
"""
out: Dict[str, dict] = {}
for ev in evals:
auc = data.get(f"test_auc_{ev}")
if auc is None:
continue
out[ev] = {
"auc": float(auc),
"roc": normalize_roc(data.get(f"test_roc_{ev}")),
"prc": normalize_prc(data.get(f"test_prc_{ev}")),
"ap": float(data.get(f"test_ap_{ev}"))
if data.get(f"test_ap_{ev}") is not None
else None,
"scores": normalize_scores_to_struct(data.get(f"test_scores_{ev}")),
"sample_indices": None,
"sample_labels": None,
"valid_mask": None,
"train_time": data.get("train_time"),
"test_time": data.get("test_time"),
}
return out
# ------------------------------------------------------------
# Build the Polars DataFrame
# ------------------------------------------------------------
def load_results_dataframe(root: Path, allow_cache: bool = True) -> pl.DataFrame:
2025-09-02 16:30:32 +02:00
"""
Walks experiment subdirs under `root`. For each (model, fold) it adds rows:
Columns (SCHEMA_STATIC):
network, latent_dim, semi_normals, semi_anomalous,
model, eval, fold,
auc, ap, scores{sample_idx,orig_label,score},
roc_curve{fpr,tpr,thr}, prc_curve{precision,recall,thr},
sample_indices, sample_labels, valid_mask,
train_time, test_time,
folder, k_fold_num
"""
if allow_cache:
cache = root / "results_cache.parquet"
if cache.exists():
try:
df = pl.read_parquet(cache)
print(f"[info] loaded cached results frame from {cache}")
return df
except Exception as e:
print(f"[warn] failed to load cache {cache}: {e}")
2025-09-02 16:30:32 +02:00
rows: List[dict] = []
exp_dirs = [p for p in root.iterdir() if p.is_dir()]
for exp_dir in sorted(exp_dirs):
try:
cfg = read_config(exp_dir)
cfg_json = json.dumps(cfg, sort_keys=True)
2025-09-02 16:30:32 +02:00
except Exception as e:
print(f"[warn] skipping {exp_dir.name}: {e}")
continue
network = cfg.get("net_name")
latent_dim = int(cfg.get("latent_space_dim"))
semi_normals = int(cfg.get("num_known_normal"))
semi_anomalous = int(cfg.get("num_known_outlier"))
k = int(cfg.get("k_fold_num"))
for model in MODELS:
for fold in range(k):
pkl = exp_dir / f"results_{model}_{fold}.pkl"
if not pkl.exists():
continue
try:
data = read_pickle(pkl)
except Exception as e:
print(f"[warn] failed to read {pkl.name}: {e}")
continue
if model == "deepsad":
per_eval = rows_from_deepsad(data, EVALS) # eval -> dict
elif model == "isoforest":
per_eval = rows_from_isoforest(data, EVALS) # eval -> dict
elif model == "ocsvm":
per_eval = rows_from_ocsvm_default(data, EVALS) # eval -> dict
else:
per_eval = {}
for ev, vals in per_eval.items():
rows.append(
{
"network": network,
"latent_dim": latent_dim,
"semi_normals": semi_normals,
"semi_anomalous": semi_anomalous,
"model": model,
"eval": ev,
"fold": fold,
"auc": vals["auc"],
"ap": vals["ap"],
"scores": vals["scores"],
"roc_curve": vals["roc"],
"prc_curve": vals["prc"],
"sample_indices": vals.get("sample_indices"),
"sample_labels": vals.get("sample_labels"),
"valid_mask": vals.get("valid_mask"),
"train_time": vals["train_time"],
"test_time": vals["test_time"],
"folder": str(exp_dir),
"k_fold_num": k,
"config_json": cfg_json,
2025-09-02 16:30:32 +02:00
}
)
# If empty, return a typed empty frame
if not rows:
return pl.DataFrame(schema=SCHEMA_STATIC)
df = pl.DataFrame(rows, schema=SCHEMA_STATIC)
# Cast to efficient dtypes (categoricals etc.) no extra sanitation
df = df.with_columns(
pl.col("network", "model", "eval").cast(pl.Categorical),
pl.col(
"latent_dim", "semi_normals", "semi_anomalous", "fold", "k_fold_num"
).cast(pl.Int32),
pl.col("auc", "ap", "train_time", "test_time").cast(pl.Float64),
# NOTE: no cast on 'scores' here; it's already List(Struct) per schema.
)
if allow_cache:
try:
df.write_parquet(cache)
print(f"[info] cached results frame to {cache}")
except Exception as e:
print(f"[warn] failed to write cache {cache}: {e}")
2025-09-02 16:30:32 +02:00
return df
def load_pretraining_results_dataframe(
root: Path,
allow_cache: bool = True,
include_train: bool = False, # <— default: store only TEST to keep cache tiny
keep_file_names: bool = False, # <— drop file_names by default; theyre repeated
parquet_compression: str = "zstd",
parquet_compression_level: int = 7, # <— stronger compression than default
) -> pl.DataFrame:
"""
Loads only AE pretraining results: files named `results_ae_<fold>.pkl`.
Produces one row per (experiment, fold, split). By default we:
- include only the TEST split (include_train=False)
- store scores as Float32
- drop the repeated file_names mapping to save space
- write Parquet with zstd(level=7)
"""
if allow_cache:
cache = root / "pretraining_results_cache.parquet"
if cache.exists():
try:
df = pl.read_parquet(cache)
print(f"[info] loaded cached pretraining frame from {cache}")
return df
except Exception as e:
print(f"[warn] failed to load pretraining cache {cache}: {e}")
2025-09-02 16:30:32 +02:00
rows: List[dict] = []
exp_dirs = [p for p in root.iterdir() if p.is_dir()]
for exp_dir in sorted(exp_dirs):
try:
cfg = read_config(exp_dir)
cfg_json = json.dumps(cfg, sort_keys=True)
except Exception as e:
print(f"[warn] skipping {exp_dir.name} (pretraining): {e}")
continue
network = cfg.get("net_name")
latent_dim = int(cfg.get("latent_space_dim"))
semi_normals = int(cfg.get("num_known_normal"))
semi_anomalous = int(cfg.get("num_known_outlier"))
k = int(cfg.get("k_fold_num"))
# Only test split by default (include_train=False)
splits = ("train", "test") if include_train else ("test",)
for fold in range(k):
pkl = exp_dir / f"results_ae_{fold}.pkl"
if not pkl.exists():
continue
try:
data = read_pickle(pkl) # expected: {"train": {...}, "test": {...}}
except Exception as e:
print(f"[warn] failed to read {pkl.name}: {e}")
continue
for split in splits:
splitd = data.get(split)
if not isinstance(splitd, dict):
continue
rows.append(
{
"network": network,
"latent_dim": latent_dim,
"semi_normals": semi_normals,
"semi_anomalous": semi_anomalous,
"model": "ae",
"fold": fold,
"split": split,
"time": float(splitd.get("time"))
if splitd.get("time") is not None
else None,
"loss": float(splitd.get("loss"))
if splitd.get("loss") is not None
else None,
# ints as Int32, scores as Float32 to save space
"indices": normalize_int_list(splitd.get("indices")),
"labels_exp_based": normalize_int_list(
splitd.get("labels_exp_based")
),
"labels_manual_based": normalize_int_list(
splitd.get("labels_manual_based")
),
"semi_targets": normalize_int_list(splitd.get("semi_targets")),
"file_ids": normalize_int_list(splitd.get("file_ids")),
"frame_ids": normalize_int_list(splitd.get("frame_ids")),
"scores": (
None
if splitd.get("scores") is None
else [
float(x)
for x in (
splitd["scores"].tolist()
if isinstance(splitd["scores"], np.ndarray)
else splitd["scores"]
)
]
),
"file_names": normalize_file_names(splitd.get("file_names"))
if keep_file_names
else None,
"folder": str(exp_dir),
"k_fold_num": k,
"config_json": cfg_json,
}
)
if not rows:
return pl.DataFrame(schema=PRETRAIN_SCHEMA)
df = pl.DataFrame(rows, schema=PRETRAIN_SCHEMA)
# Cast/optimize a bit (categoricals, ints, floats)
df = df.with_columns(
pl.col("network", "model", "split").cast(pl.Categorical),
pl.col(
"latent_dim", "semi_normals", "semi_anomalous", "fold", "k_fold_num"
).cast(pl.Int32),
pl.col("time", "loss").cast(pl.Float64),
pl.col("scores").cast(pl.List(pl.Float32)), # ensure downcast took
2025-09-02 16:30:32 +02:00
)
if allow_cache:
try:
cache = root / "pretraining_results_cache.parquet"
df.write_parquet(
cache,
compression=parquet_compression,
compression_level=parquet_compression_level,
statistics=True,
)
print(
f"[info] cached pretraining frame to {cache} "
f"({parquet_compression}, level={parquet_compression_level})"
)
except Exception as e:
print(f"[warn] failed to write pretraining cache {cache}: {e}")
return df
2025-09-02 16:30:32 +02:00
def main():
2025-09-09 14:15:16 +02:00
root = Path("/home/fedex/mt/results/copy")
df1 = load_results_dataframe(root, allow_cache=True)
exit(0)
retest_root = Path("/home/fedex/mt/results/copy/retest_nodrop")
df2 = load_results_dataframe(retest_root, allow_cache=False).drop("folder")
# exact schema & shape first (optional but helpful messages)
assert df1.shape == df2.shape, f"Shape differs: {df1.shape} vs {df2.shape}"
assert set(df1.columns) == set(df2.columns), (
f"Column sets differ: {df1.columns} vs {df2.columns}"
)
# allow small float diffs, ignore column order differences if you want
df1_sorted = df1.select(sorted(df1.columns))
df2_sorted = df2.select(sorted(df2.columns))
# Optionally pre-align/sort both frames by a stable key before diffing.
summary, leaves = recursive_diff_frames(
df1,
df2,
ignore=["timestamp"], # columns to ignore
float_atol=0.1, # absolute tolerance for floats
float_rtol=0.0, # relative tolerance for floats
max_rows_per_column=20, # limit expansion per column
max_leafs_per_row=200, # cap leaves per row
)
pl.Config.set_fmt_table_cell_list_len(100)
pl.Config.set_tbl_rows(100)
print(summary) # which columns differ & how many rows
print(leaves) # exact nested paths + scalar diffs
# check_exact=False lets us use atol/rtol for floats
assert_frame_equal(
df1_sorted,
df2_sorted,
check_exact=False,
atol=0.1, # absolute tolerance for floats
rtol=0.0, # relative tolerance (set if you want % based)
check_dtypes=True, # set False if you only care about values
)
print("DataFrames match within tolerance ✅")
2025-09-09 14:15:16 +02:00
# df_pre = load_pretraining_results_dataframe(root, allow_cache=True)
# print("pretraining:", df_pre.shape, df_pre.head())
2025-09-02 16:30:32 +02:00
if __name__ == "__main__":
main()