data chapter intro

This commit is contained in:
Jan Kowalczyk
2025-03-05 09:37:30 +01:00
parent 328a79eaaf
commit bc8e73c51e

View File

@@ -278,7 +278,14 @@
\todo[inline]{semi supervised, learns normality by amount of data (no labeling/ground truth required), very few labels for better training to specific situation}
\newchapter{Data and Preprocessing}{chap:data_preprocessing}
\todo[inline, color=green!40]{good data important for learning based methods and for evaluation. in this chapter we talk about the requirements we have for our data and the difficulties that come with them and will then give some information about the dataset that was used as well as how the data was preprocessed for the experiments (sec 4.2)}
%\todo[inline, color=green!40]{good data important for learning based methods and for evaluation. in this chapter we talk about the requirements we have for our data and the difficulties that come with them and will then give some information about the dataset that was used as well as how the data was preprocessed for the experiments (sec 4.2)}
%Fortunately situations like earthquakes, structural failures and other circumstances where rescue robots need to be employed are uncommon occurences. When such an operation is conducted, the main focus lies on the fast and safe rescue of any survivors from the hazardous environment, therefore it makes sense that data collection is not a priority. Paired with the rare occurences this leads to a lack of publicly available data of such situations. To improve any method, a large enough, diversified and high quality dataset is always necessary to provide a comprehensive evaluation. Additionally, in this work we evaluate a training based method, which increases the requirements on the data manifold, which makes it all the more complex to find a suitable dataset. In this chapter we will state the requirements we defined for the data, talk about the dataset that was chosen for this task, including some statistics and points of interest, as well as how it was preprocessed for the training and evaluation of the methods.
Situations such as earthquakes, structural failures, and other emergencies that require rescue robots are fortunately rare. When these operations do occur, the primary focus is on the rapid and safe rescue of survivors rather than on data collection. Consequently, there is a scarcity of publicly available data from such scenarios. To improve any method, however, a large, diverse, and high-quality dataset is essential for comprehensive evaluation. This challenge is further compounded in our work, as we evaluate a training-based approach that imposes even higher requirements on the data to enable training, making it difficult to find a suitable dataset.
In this chapter, we outline the specific requirements we established for the data, describe the dataset selected for this task—including key statistics and notable features—and explain the preprocessing steps applied for training and evaluating the methods.
\newsection{Data}{sec:data}